日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
          (1)若D是BC的中點(diǎn),求證:AD⊥CC1;
          (2)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C.
          分析:(1)由AB=AC,且D是BC的中點(diǎn)得到AD⊥BC,再由側(cè)面BB1C1C⊥底面ABC,結(jié)合面面垂直的性質(zhì)得到AD⊥側(cè)面BB1C1C.從而證得答案;
          (2)由AM=MA1,可想到延長(zhǎng)B1A1與BM交于N,連結(jié)C1N,由中位線知識(shí)結(jié)合已知得到A1C1=A1N=A1B1,∴C1N⊥C1B1,然后由面面垂直的性質(zhì)及判定得答案.
          解答:證明:(1)如圖,
          ∵AB=AC,D是BC的中點(diǎn),∴AD⊥BC,
          ∵底面ABC⊥平面BB1C1C,
          由兩面垂直的性質(zhì),∴AD⊥側(cè)面BB1C1C.
          又CC1?面BB1C1C,∴AD⊥CC1;                                                          
          (2)延長(zhǎng)B1A1與BM的延長(zhǎng)線交于N,連結(jié)C1N,
          ∵AM=MA1,且MA1∥BB1,∴NA1=A1B1
          ∵AB=AC,∴A1B1=A1C1,∴A1C1=A1N=A1B1,
          ∴A1為△B1C1N外接圓的圓心,
          ∴C1N⊥C1B1,
          ∵底面NB1C1⊥側(cè)面BB1C1C,
          由面面垂直的性質(zhì),∴C1N⊥側(cè)面BB1C1C,
          ∴截面C1NB⊥側(cè)面BB1C1C,∴截面MBC1⊥側(cè)面BB1C1C.
          點(diǎn)評(píng):本題考查了平面與平面垂直的判定,考查了直線與平面垂直的性質(zhì),解答此題的關(guān)鍵在于充分利用了中點(diǎn),綜合考查了學(xué)生的空間想象能力和思維能力,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
          (Ⅰ)若D是BC的中點(diǎn),求證:AD⊥CC1;
          (Ⅱ)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C;
          (Ⅲ) AM=MA1是截面MBC1⊥平面BB1C1C的充要條件嗎?請(qǐng)你敘述判斷理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.D為BC的中點(diǎn),M為AA1的中點(diǎn).
          (1)求證:AD∥平面MB1C;
          (2)求證:平面MB1C⊥側(cè)面BB1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.

          (1)若D是BC的中點(diǎn).求證:AD⊥CC1

          (2)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,

          求證:截面MBC1⊥側(cè)面BB1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在斜三棱柱A1B1C1ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.

          (1)若DBC的中點(diǎn),求證:ADCC1;

          (2)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C

          (3)AM=MA1是截面MBC1⊥平面BB1C1C的充要條件嗎?請(qǐng)你敘述判斷理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案