日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設(shè)計各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元

          A.4500B.4000C.2880D.2380

          【答案】B

          【解析】

          根據(jù)題意,先求得正四棱柱的底面棱長和高,由體積公式即可求得正四棱柱的體積.減去文物的體積,即可求得罩內(nèi)的氣體體積,進而求得所需費用.

          由題意可知, 文物底部是直徑為0.9米的圓形,文物底部與玻璃罩底邊至少間隔0.3

          所以由正方形與圓的位置關(guān)系可知,底面正方形的邊長為

          文物高1.8,文物頂部與玻璃罩上底面至少間隔0.2

          所以正四棱柱的高為

          則正四棱柱的體積為

          因為文物體積為

          所以罩內(nèi)空氣的體積為

          氣體每立方米

          所以共需費用為

          故選:B

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知位數(shù)滿足下列條件:①各個數(shù)字只能從集合中選。虎谌羝渲杏袛(shù)字,則在的前面不含,將這樣的位數(shù)的個數(shù)記為;

          1)求;

          2)探究之間的關(guān)系,求出數(shù)列的通項公式;

          3)對于每個正整數(shù),在之間插入得到一個新數(shù)列,設(shè)是數(shù)列的前項和,試探究能否成立,寫出你探究得到的結(jié)論并給出證明;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中a為非零常數(shù).

          討論的極值點個數(shù),并說明理由;

          ,證明:在區(qū)間內(nèi)有且僅有1個零點;設(shè)的極值點,的零點且,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中.

          (1)若,求曲線處的切線方程;

          (2)設(shè)函數(shù)若至少存在一個,使得成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )

          A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

          B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

          C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

          D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          I)試判斷函數(shù)的單調(diào)性;

          )若函數(shù)上有且僅有一個零點,

          i)求證:此零點是的極值點;

          )求證:.

          (本題可能會用到的數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

          (2)若函數(shù)的導(dǎo)函數(shù)上有三個零點,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù)

          (1)討論函數(shù)的單調(diào)性;

          (2)若的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于P,Q兩點,且點M滿足.

          1)若點,求直線的方程;

          2)若直線l過點且不與x軸重合,過點M作垂直于l的直線y軸交于點,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案