如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點(diǎn),求三棱錐D-A1BC1的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知斜三棱柱的底面是直角三角形,
,側(cè)棱與底面所成角為
,點(diǎn)
在底面上的射影
落在
上.
(1)求證:平面
;
(2)若,且當(dāng)
時(shí),求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,側(cè)面
底面
,
,
為
中點(diǎn),底面
是直角梯形,
,
,
,
.
(1)求證:面
;
(2)求證:面面
;
(3)設(shè)為棱
上一點(diǎn),
,試確定
的值使得二面角
為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,、
為圓柱
的母線,
是底面圓
的直徑,
、
分別是
、
的中點(diǎn),
.
(1)證明:;
(2)證明:;
(3)求四棱錐與圓柱
的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱中,
平面
.
(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為的充分條件,并給予證明;
①,②
;③
是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長(zhǎng)都為1,且
為銳角,求平面
與平面
所成銳二面角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面四邊形的4個(gè)頂點(diǎn)都在球
的表面上,
為球
的直徑,
為球面上一點(diǎn),且
平面
,
,點(diǎn)
為
的中點(diǎn).
(1) 證明:平面平面
;
(2) 求點(diǎn)到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com