日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若數(shù)列{an}滿足a1=1,an+1=2an+n,則通項an=
          3×2n-1-n-1
          3×2n-1-n-1
          分析:由an+1=2an+n,變形為an+1+(n+2)=2(an+n+1),再利用等比數(shù)列的通項公式即可得出.
          解答:解:由an+1=2an+n,可得an+1+(n+2)=2(an+n+1),
          ∴數(shù)列{an+n+1}是以a1+1+1=3為首項,2為公比的等比數(shù)列.
          an+n+1=3×2n-1,
          得到an=3×2n-1-n-1
          故答案為3×2n-1-n-1.
          點評:正確變形利用等比數(shù)列的通項公式是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          下列關(guān)于數(shù)列的命題中,正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•煙臺二模)若數(shù)列{an}滿足an+12-
          a
          2
          n
          =d
          (d為正常數(shù),n∈N+),則稱{an}為“等方差數(shù)列”.甲:數(shù)列{an}為等方差數(shù)列;乙:數(shù)列{an}為等差數(shù)列,則甲是乙的( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•三明模擬)若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于
          1
          m
          ,那么正數(shù)m的最小取值是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

          若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
          A.5
          B.
          C.7
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          若數(shù)列{an}滿足a≤an≤b,其中a、b是常數(shù),則稱數(shù)列{an}為有界數(shù)列,a是數(shù)列{an}的下界,b是數(shù)列{an}的上界.現(xiàn)要在區(qū)間[-1,2)中取出20個數(shù)構(gòu)成有界數(shù)列{bn},并使數(shù)列{bn}有且僅有兩項差的絕對值小于,那么正數(shù)m的最小取值是( )
          A.5
          B.
          C.7
          D.

          查看答案和解析>>

          同步練習冊答案