日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知,在空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
          (1)求證:平面CDE⊥平面ABC;
          (2)若AB=DC=3,BC=5,BD=4,求幾何體ABCD的體積;
          (3)若G為△ADC的重心,試在線段AB上找一點(diǎn)F,使得GF∥平面CDE.
          分析:(1)先證出直線AB與平面上的兩條相交直線垂直,得到線面垂直,而線又在一個(gè)平面上,得到面面垂直.
          (2)要求的幾何體是一個(gè)三棱錐,線段CD的長(zhǎng)是三棱錐C-ABD的高,做出對(duì)應(yīng)的底面的面積,根據(jù)三棱錐的體積公式做出結(jié)果.
          (3)在AB上取一點(diǎn)F,使AF=2FE,則可得GF∥平面CDE,取DC的中點(diǎn)H,連AH、EH,根據(jù)G為△ADC的重心,得到G在AH上,且AG=2GH,連FG,則FG∥EH,再說明線在平面上,得到結(jié)論.
          解答:解:精英家教網(wǎng)(1)證明:∵BC=AC,E為AB的中點(diǎn),
          ∴AB⊥CE.
          又∵AD=BD,E為AB的中點(diǎn)
          ∴AB⊥DE.
          ∵DE∩CE=E
          ∴AB⊥平面DCE
          ∵AB?平面ABC,
          ∴平面CDE⊥平面ABC.
          (2)∵在△BDC中,DC=3,BC=5,BD=4,
          ∴CD⊥BD,
          在△ADC中,DC=3,AD=BD=4,AC=BC=5,
          ∴CD⊥AD,
          ∵AD∩BD=D∴CD⊥平面ABD.所以線段CD的長(zhǎng)
          是三棱錐C-ABD的高
          又在△ADB中,DE=
          16-
          9
          4
          =
          55
          2

          ∴VC-ABD=
          1
          3
          1
          2
          •3•
          55
          2
          •3=
          3
          55
          4

          (3)在AB上取一點(diǎn)F,使AF=2FE,則可得GF∥平面CDE
          取DC的中點(diǎn)H,連AH、EH
          ∵G為△ADC的重心,
          ∴G在AH上,且AG=2GH,連FG,則FG∥EH
          又∵FG?平面CDE,EH?平面CDE,
          ∴GF∥平面CDE
          點(diǎn)評(píng):本題考查空間幾何體的點(diǎn)線面之間的關(guān)系的證明,本題解題的關(guān)鍵是熟練所學(xué)的判定定理和性質(zhì)定理,這里反復(fù)使用定理來解題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,要在呈空間四邊形的支架上安裝一塊矩形的太陽能吸光板(圖中EFGH),矩形的四個(gè)頂點(diǎn)分別在空間四邊形ABCD的邊上.已知AC=a,BD=b,試問:E、F、G、H分別在什么位置時(shí),吸光板的面積最大?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案