日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知命題p:π是無理數(shù);命題q:3>5,判斷“p∨q”,“p∧q”的真假.
          (2)畫出一元二次不等式x+y-1>0表示的平面區(qū)域.
          分析:(1)先判斷命題p,q的真假,再根據(jù)真值表就可判斷“p∧q”,“p∨q”的真假.
          (2)作出不等式對應直線的圖象,然后取特殊點代入不等式,判斷不等式是否成立后得二元一次不等式表示的平面區(qū)域.
          解答:解:(1)∵π是無理數(shù),∴命題p為真命題.
          ∵3>5不成立,∴命題q為假命題.
          ∴命題“p∨q”是真命題,命題“p∧q”是假命題.
          (2)不等式x+y-1>0對應的函數(shù)x+y-1=0的圖象是一條直線,取點(0,0),把該點的坐標代入不等式x+y-1>0不成立,說明不等式x+y-1>0表示的平面區(qū)域與點(0,0)異側(cè),
          所以不等式x+y-1>0表示的平面區(qū)域在直線x+y-1=0的右上方,不含直線.
          點評:(1)本題主要考查考查了簡單命題和復合命題真假的判斷,要熟記真值表.
          (2)本題考查了二元一次不等式與平面區(qū)域,常用代特殊點驗證法,當不等式對應的直線不過原點時,常取原點代入驗證,過原點時,可任找一數(shù)值較小的點代入驗證,此題是基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (1)已知命題p:?x∈R,x2+2ax+a≤0.若命題p是假命題,求實數(shù)a的取值范圍;
          (2)已知p:方程x2+mx+1=0有兩個不等的實數(shù)根,q:方程4x2+4(m-2)x+1=0無實根.若p或q為真,p且q為假,求實數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          有下列命題:
          ①函數(shù)y=cos(x-
          π
          4
          )cos(x+
          π
          4
          )的圖象中,相鄰兩個對稱中心的距離為π;
          ②函數(shù)y=
          x+3
          x-1
          的圖象關于點(-1,1)對稱;
          ③關于x的方程ax2-2ax-1=0有且僅有一個實數(shù)根,則實數(shù)a=-1;
          ④已知命題p:對任意的x∈R,都有sinx≤1,則非p:存在x∈R,使得sinx>1.
          其中所有真命題的序號是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知命題p:2x2-3x+1≤0和命題q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.
          (2)已知命題s:方程x2+(m-3)x+m=0的一根在(0,1)內(nèi),另一根在(2,3)內(nèi).命題t:函數(shù)f(x)=ln(mx2-2x+1)的定義域為全體實數(shù).若s∨t為真命題,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知命題p:方程x2+(m-3)x+1=0無實根,命題q:方程x2+
          y2m-1
          =1是焦點在y軸上的橢圓.若¬p與p∧q同時為假命題,求m的取值范圍.
          (2)已知命題p:2x2-3x+1≤0和命題q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習冊答案