日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2
          (1)若α為第一象限角且f(α)= ,求g(α)之值;
          (2)求f(x﹣1080°)≥g(x)在[0,360°]內(nèi)的解集.

          【答案】
          (1)解:∵f(x)=sin(x﹣30°)+cos(x﹣60°)= sinx﹣ cosx+ cosx+ sinx= sinx,

          g(x)=2sin2 =1﹣cosx,

          由f(α)= ,可得:sinα= ,

          又α為第一象限角,

          ∴cos ,

          ∴g(α)=


          (2)解:由(1)可得f(x)= sinx,

          ∴f(x﹣1080°)= sin(x﹣1080°)= sinx,

          ∴f(x﹣1080°)≥g(x)等價(jià)于 sinx≥1﹣cosx,即: sinx+cosx≥1,

          可得:2sin(x+30°)≥1,

          ∴sin(x+30°)≥

          ∴k360°+30°≤x+30°≤k360°+150°(k∈Z),

          又∵x∈[0°,360°],

          ∴0°≤x≤120°,

          ∴f(x﹣1080°)≥g(x)的解集為:[0°,120°]


          【解析】(1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得f(x)= sinx,g(x)=1﹣cosx,由f(α)= ,可求sinα,利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而可求g(α).(2)由(1)利用誘導(dǎo)公式可求f(x﹣1080°)= sinx,由f(x﹣1080°)≥g(x),可得sin(x+30°)≥ ,結(jié)合范圍x∈[0°,360°],利用正弦函數(shù)的圖象和性質(zhì)即可得解.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知?jiǎng)又本(xiàn)l:m+3x-m+2y+m=0與圓C:x-32y-42=9.

          1求證:無(wú)論m為何值,直線(xiàn)l總過(guò)定點(diǎn)A,并說(shuō)明直線(xiàn)l與圓C總相交.

          2m為何值時(shí),直線(xiàn)l被圓C所截得的弦長(zhǎng)最?請(qǐng)求出該最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問(wèn)卷調(diào)查活動(dòng)(一人答一份).現(xiàn)從回收的年齡在2060歲的問(wèn)卷中隨機(jī)抽取了100份, 統(tǒng)計(jì)結(jié)果如下面的圖表所示.

          年齡

          分組

          抽取份

          數(shù)

          答對(duì)全卷的人數(shù)

          答對(duì)全卷的人數(shù)占本組的概率

          [20,30)

          40

          28

          0.7

          [30,40)

          n

          27

          0.9

          [40,50)

          10

          4

          b

          [50,60]

          20

          a

          0.1

          (1)分別求出n, a, b, c的值;

          (2)從年齡在[40,60]答對(duì)全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在△ABC中,A=450,AB=,BC=2,求解此三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】【廣西名校2017屆高三上學(xué)期第一次摸底】如圖,過(guò)拋物線(xiàn)一點(diǎn),作兩條直線(xiàn)分別交拋物線(xiàn)于,

          當(dāng)斜率存在且傾斜角互補(bǔ)時(shí)

          值;

          直線(xiàn)上的截距時(shí),面積最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)面為正三角形,且面, 分別為棱的中點(diǎn).

          (1)求證: 平面;

          2)(文科)求三棱錐的體積;

          (理科)求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓過(guò)兩點(diǎn), ,且圓心在直線(xiàn).

          1)求圓的標(biāo)準(zhǔn)方程;

          2)直線(xiàn)過(guò)點(diǎn)且與圓有兩個(gè)不同的交點(diǎn),若直線(xiàn)的斜率大于0,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2 ,AC=BC,F(xiàn) 是AB上一點(diǎn),且AF= AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知CE=

          (1)求證:AD⊥平面BCE;
          (2)求證:AD∥平面CEF;
          (3)求三棱錐A﹣CFD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和. (Ⅰ)若2Sn=3n+3.求{an}的通項(xiàng)公式;
          (Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案