日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。
          A.4個B.3個C.2個D.1個

          證明:∵AB是圓O的直徑
          ∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形
          又∵PA⊥圓O所在平面,
          ∴△PAC,△PAB是直角三角形.
          且BC在這個平面內(nèi),
          ∴PA⊥BC 因此BC垂直于平面PAC中兩條相交直線,
          ∴BC⊥平面PAC,
          ∴△PBC是直角三角形.
          從而△PAB,△PAC,△ABC,△PBC中,直角三角形的個數(shù)是:4.
          故選:A
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在正方體ABCD-A1B1C1D1中,AB=1
          (1)求異面直線A1B與B1C所成的角;
          (2)求證:平面A1BD平面B1CD1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,矩形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,AB=AD=1,CD=2,DE=4,M為CE的中點.
          (Ⅰ)求證:BM平面ADEF:
          (Ⅱ)求證:BC⊥平面BDE;
          (Ⅲ)求三棱錐C-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點,G為PD的中點△DAB≌△DCB,EA=EB=AB=1,PA=
          3
          2
          ,連接CE并延長交AD于F.
          (1)求證:AD⊥平面CFG;
          (2)求三棱錐P-ABD外接球的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形.∠DAB=60°,AB=2AD,PD⊥底面
          ABCD.
          (Ⅰ)證明:PA⊥BD
          (Ⅱ)設(shè)PD=AD=1,求棱錐D-PBC的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在多面體ABCDEF中,四邊形ABCD是正方形,F(xiàn)A⊥平面ABCD,EFBC,F(xiàn)A=2,AD=3,∠ADE=45°,點G是FA的中點.
          (1)求證:EG⊥平面CDE;
          (2)在棱BC是否存在點M,使GM平面CDE,若存在,找出點M;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E為BC的中點.
          (1)求異面直線NE與AM所成角的余弦值;
          (2)在線段AN上是否存在點S,使得ES⊥平面AMN?
          (3)若存在,求線段AS的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知正方體ABCD-A1B1C1D1的棱長為2,P、Q分別是BC、CD上的動點,且|PQ|=
          2
          ,建立如圖所示的坐標(biāo)系.
          (1)確定P、Q的位置,使得B1Q⊥D1P;
          (2)當(dāng)B1Q⊥D1P時,求二面角C1-PQ-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          ABCD為平行四邊形,P為平面ABCD外一點,PA⊥面ABCD,且PA=AD=2,AB=1,AC=
          3

          (1)求證:平面ACD⊥平面PAC;
          (2)求異面直線PC與BD所成角的余弦值;
          (3)設(shè)二面角A-PC-B的大小為θ,試求tanθ的值.

          查看答案和解析>>

          同步練習(xí)冊答案