日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          lnx
          x
          -1

          (1)試判斷函數(shù)f(x)的單調(diào)性;
          (2)設(shè)m>0,求f(x)在[m,2m]上的最大值;
          (3)試證明:對(duì)?n∈N*,不等式ln(
          1+n
          n
          )e
          1+n
          n
          分析:(1)利用商的求導(dǎo)法則求出所給函數(shù)的導(dǎo)函數(shù)是解決本題的關(guān)鍵,利用導(dǎo)函數(shù)的正負(fù)確定出函數(shù)的單調(diào)性;
          (2)利用導(dǎo)數(shù)作為工具求出函數(shù)在閉區(qū)間上的最值問(wèn)題,注意分類討論思想的運(yùn)用;
          (3)利用導(dǎo)數(shù)作為工具完成該不等式的證明,注意應(yīng)用函數(shù)的最值性質(zhì).
          解答:解:(1)函數(shù)f(x)的定義域是:(0,+∞)
          由已知f(x)=
          1-lnx
          x2

          令f′(x)=0得,1-lnx=0,∴x=e
          ∵當(dāng)0<x<e時(shí),f(x)=
          1-lnx
          x2
          >0
          ,
          當(dāng)x>e時(shí),f(x)=
          1-lnx
          x2
          <0

          ∴函數(shù)f(x)在(0,e]上單調(diào)遞增,在[e,+∞)上單調(diào)遞減,

          (2)由(1)知函數(shù)f(x)在(0,e]上單調(diào)遞增,在[e,+∞)上單調(diào)遞減
          故①當(dāng)0<2m≤e即0<m≤
          e
          2
          時(shí),f(x)在[m,2m]上單調(diào)遞增
          f(x)max=f(2m)=
          ln(2m)
          2m
          -1
          ,
          ②當(dāng)m≥e時(shí),f(x)在[m,2m]上單調(diào)遞減
          f(x)max=f(m)=
          lnm
          m
          -1
          ,
          ③當(dāng)m<e<2m,即
          e
          2
          <m<e
          時(shí)
          f(x)max=f(e)=
          1
          e
          -1


          (3)由(1)知,當(dāng)x∈(0,+∞)時(shí),f(x)max=f(e)=
          1
          e
          -1
          ,
          ∴在(0,+∞)上恒有f(x)=
          lnx
          x
          -1≤
          1
          e
          -1
          ,
          lnx
          x
          1
          e
          且當(dāng)x=e時(shí)“=”成立,
          ∴對(duì)?x∈(0,+∞)恒有lnx≤
          1
          e
          x
          ,
          1+n
          n
          >0,
          1+n
          n
          ≠e
          ,
          ln
          1+n
          n
          1
          e
          1+n
          n
          ?ln(
          1+n
          n
          )e
          1+n
          n

          即對(duì)?n∈N*,不等式ln(
          1+n
          n
          )e
          1+n
          n
          恒成立.
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用問(wèn)題,考查函數(shù)的定義域思想,考查導(dǎo)數(shù)的計(jì)算,考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,考查函數(shù)的最值與導(dǎo)數(shù)的關(guān)系,注意問(wèn)題的等價(jià)轉(zhuǎn)化性.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
          (2)當(dāng)a<3時(shí),令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
          (2)當(dāng)x∈[
          1
          e
          ,e]
          時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
          (1)求直線l的方程及a的值;
          (2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實(shí)數(shù),x∈R,a∈R.
          (1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案