日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•自貢一模)某中學(xué)在高二開設(shè)了4門選修課,每個學(xué)生必須且只需選修1門選修課,對于該年級的甲、乙、丙3名學(xué)生.
          (I)求這3名學(xué)生選擇的選修課互不相同的概率;
          (II)求恰有2門選修課沒有被這3名學(xué)生選擇的概率.
          分析:(Ⅰ)3名學(xué)生選擇選修課的方法總數(shù)是43,選了3門不同的選修課的方法有
          A
          3
          4
          種,由此能夠求出這3名學(xué)生選擇的選修課互不相同的概率.
          (Ⅱ) 3名學(xué)生選擇選修課的方法總數(shù)是43,恰有2門選修課這3名學(xué)生都沒選擇的選法有
          C
          2
          4
          C
          2
          3
          A
          2
          2
          ,由此能求出恰有2門選修課這3名學(xué)生都沒選擇的概率.
          解答:解:(Ⅰ)3名學(xué)生選擇了3門不同的選修課的概率:
          P1=
          A
          3
          4
          43
          =
          4×3×2
          4×4×4
          =
          3
          8

          (Ⅱ) 恰有2門選修課這3名學(xué)生都沒選擇的概率:
          P2=
          C
          2
          4
          C
          2
          3
          A
          2
          2
          43
          =
          2×3×3×2
          4×4×4
          =
          9
          16
          點(diǎn)評:本題考查概率的應(yīng)用,是中檔題.在歷年的高考中都是重點(diǎn)題型.解題時要認(rèn)真審題,仔細(xì)解答,注意排列組合知識的靈活運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)已知
          a
          +
          b
          +
          c
          =
          0
          ,且
          a
          c
          的夾角為60°,|
          b
          |=
          3
          |
          a
          |,則cos<
          a
          ,
          b
          等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)已知函數(shù)f(x)=
          2x     ,x≥0
          x(x+1),x<0
          ,則f(-2)等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)f(x)是以4為周期的奇函數(shù),f(
          1
          2
          )=1
          sinα=
          1
          4
          ,則f(4cos2α)=
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)要研究可導(dǎo)函數(shù)f(x)=(1+x)n(n∈N*)在某點(diǎn)x0處的瞬時變化率,有兩種方案可供選擇:①直接求導(dǎo),得到f′(x),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式;②先把f(x)=(1+x)n按二項式展開,逐個求導(dǎo),再把橫坐標(biāo)x0代入導(dǎo)函數(shù)f′(x)的表達(dá)式.綜合①②,可得到某些恒等式.利用上述思想方法,可得恒等式:Cn1+2Cn2+3Cn3+…nCnn=
          n•2n-1
          n•2n-1
           n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•自貢一模)已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①對于任意x∈[0,1],總有f(x)≥3;②f(1)=4;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.
          (I)求f(0)的值;
          (II)求函數(shù)f(x)的最大值;
          (III)設(shè)數(shù)列{an}的前n項和為Sn,滿足a1=1,Sn=-
          1
          2
          (an-3),n∈N*
          ,求證:f(a1)+f(a2)+…+f(an)<
          3
          2
          log3
          27
          a
          2
          n

          查看答案和解析>>

          同步練習(xí)冊答案