日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中,給出四個(gè)結(jié)論:

          ①函數(shù)是最小正周期為的奇函數(shù);

          ②函數(shù)的圖像的一條對(duì)稱軸是;

          ③函數(shù)圖像的一個(gè)對(duì)稱中心是

          ④函數(shù)的遞增區(qū)間為.則正確結(jié)論的個(gè)數(shù)為( )

          A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

          【答案】B

          【解析】解答:

          =cos2xcossin2xsincos2x=cos2xsin2xcos2x=sin2xcos2x=sin(2x+)

          T=π,即函數(shù)f(x)的最小正周期為π,

          f(0)=sin=≠0,函數(shù)f(x)不是奇函數(shù)。命題錯(cuò)誤;

          f()=sin(2×+)=sin=1,

          函數(shù)f(x)圖象的一條對(duì)稱軸是x=.命題正確;

          f()=sin(2×+)=sinπ=0,

          函數(shù)f(x)圖象的一個(gè)對(duì)稱中心為(,0).命題正確;

          +22x++2,得:

          +x+kZ.

          函數(shù)f(x)的遞增區(qū)間為[+,+],kZ.命題正確。

          正確結(jié)論的個(gè)數(shù)是3個(gè)。

          故選:B.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某知名品牌汽車深受消費(fèi)者喜愛,但價(jià)格昂貴。某汽車經(jīng)銷商推出三種分期付款方式銷售該品牌汽車,并對(duì)近期100位采用上述分期付款的客戶進(jìn)行統(tǒng)計(jì)分析,得到如下的柱狀圖。已知從三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1輛所獲得的利潤(rùn)分別是1萬元,2萬元,3萬元。以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率。

          (Ⅰ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤(rùn)不大于2萬元的概率;

          (Ⅱ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤(rùn)的平均值;

          (Ⅲ)根據(jù)某稅收規(guī)定,該汽車經(jīng)銷商每月(按30天計(jì))上交稅收的標(biāo)準(zhǔn)如下表:

          若該經(jīng)銷商按上述分期付款方式每天平均銷售此品牌汽車3輛,估計(jì)其月純收入(純收入=總利潤(rùn)-上交稅款)的平均值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了名女性或名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

          (1)完成下列 列聯(lián)表:

          喜歡旅游

          不喜歡旅游

          估計(jì)

          女性

          男性

          合計(jì)

          (2)能否在犯錯(cuò)誤概率不超過的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.

          附:

          參考公式:

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某高中在校學(xué)生2 000人,高一年級(jí)與高二年級(jí)人數(shù)相同并且都比高三年級(jí)多1人.為了響應(yīng)市教育局“陽光體育”號(hào)召,該校開展了跑步和跳繩兩項(xiàng)比賽,要求每人都參加而且只參加其中一項(xiàng),各年級(jí)參與項(xiàng)目人數(shù)情況如下表:

            年級(jí)

          項(xiàng)目  

          高一年級(jí)

          高二年級(jí)

          高三年級(jí)

          跑步

          a

          b

          c

          跳繩

          x

          y

          z

          其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對(duì)本次活動(dòng)的滿意度,采用分層抽樣從中抽取一個(gè)200人的樣本進(jìn)行調(diào)查,則高二年級(jí)中參與跑步的同學(xué)應(yīng)抽取多少人?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2017年“一帶一路”國(guó)際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))

          無意愿

          有意愿

          總計(jì)

          40

          5

          總計(jì)

          25

          80

          (1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);

          (2)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.

          附參考公式及數(shù)據(jù): ,其中.

          0.40

          0.25

          0.10

          0.010

          0.005

          0.001

          0.708

          1.323

          2.706

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

          (1)求的普通方程和的傾斜角;

          (2)設(shè)點(diǎn), 交于兩點(diǎn),求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面為矩形,D的中點(diǎn),AC平面BCC1B1

          (Ⅰ)證明:AB//平面CDB1;

          (Ⅱ)若AC=BC=1,BB1=,

          (1)求BD的長(zhǎng);

          (2)求B1D與平面ABB1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

          (Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

          (Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線交與, ,求, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;

          21的條件下,當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案