日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
          x=-2-3t
          y=2-4t
          (t為參數(shù))
          它與曲線C:(y-2)2-x2=1交于A、B兩點(diǎn).
          (1)求|AB|的長(zhǎng);
          (2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為(2
          2
          ,
          4
          )
          ,求點(diǎn)P到線段AB中點(diǎn)M的距離.
          分析:(Ⅰ)把直線的參數(shù)方程對(duì)應(yīng)的坐標(biāo)代入曲線方程并化簡(jiǎn)得 7t2-12t-5=0,求出t1+t2和t1•t2,根據(jù)|AB|
          =
          (-3)2+(-4) 2
          •|t1-t2|=5
          (t12)2-4 t12
          ,運(yùn)算求得結(jié)果.
          (Ⅱ)根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)M對(duì)應(yīng)的參數(shù)為
          t12
          2
          =
          6
          7
          . 由t的幾何意義可得點(diǎn)P到M的距離為|PM|=
          (-3)2+(-4) 2
          •|
          6
          7
          |,運(yùn)算求得結(jié)果.
          解答:解:(Ⅰ)把直線的參數(shù)方程對(duì)應(yīng)的坐標(biāo)代入曲線方程并化簡(jiǎn)得 7t2-12t-5=0,
          設(shè)A,B對(duì)應(yīng)的參數(shù)分別為 t1 和t2,則  t1+t2=
          12
          7
          ,t1•t2 =-
          5
          7
          .     …(3分)
          所以|AB|=
          (-3)2+(-4) 2
          •|t1-t2|=5
          (t12)2-4 t12
          =
          10
          71
          7
          . …(5分) 
          (Ⅱ)易得點(diǎn)P在平面直角坐標(biāo)系下的坐標(biāo)為(-2,2),
          根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)M對(duì)應(yīng)的參數(shù)為
          t12
          2
          =
          6
          7
          .   …(8分)
          所以由t的幾何意義可得點(diǎn)P到M的距離為|PM|=
          (-3)2+(-4) 2
          •|
          6
          7
          |=
          30
          7
          .  …(10分)
          點(diǎn)評(píng):本題主要考查直線的參數(shù)方程、點(diǎn)到直線的距離公式,用極坐標(biāo)刻畫點(diǎn)的位置,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          [選修4-4:坐標(biāo)系與參數(shù)方程]
          在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          2
          2
          +
          3
          2
          t
          (t為參數(shù)),若以直角坐標(biāo)系xoy 的O點(diǎn)為極點(diǎn),Ox為極軸,且長(zhǎng)度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
          π
          4
          ).直線l與曲線C交于A,B兩點(diǎn),求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          A.選修4-1:幾何證明選講
          如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC
          交于點(diǎn)D.求證:ED2=EB•EC.
          B.選修4-2:矩陣與變換
          求矩陣M=
          -14
          26
          的特征值和特征向量.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
          π
          4
          )=
          3
          2
          2
          和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長(zhǎng).
          D.選修4-5:不等式選講
          對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
          π
          4
          )=2
          2

          (Ⅰ)求C1與C2交點(diǎn)的極坐標(biāo);
          (Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程為
          x=t3+a
          y=
          b
          2
          t3+1
          (t∈R為參數(shù)),求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-4:
          坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
          在以0為原點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點(diǎn)為A,ι與C2除極點(diǎn)外的一個(gè)交點(diǎn)為B.當(dāng)α=0時(shí),|AB|=4.
          (1)求C1,C2的直角坐標(biāo)方程;
          (2)若過點(diǎn)P(1,0)且斜率為
          3
          的直線m與曲線C1交于D、E兩點(diǎn),求|PD|與|PE|差的絕對(duì)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
          在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
          x=2cosθ
          y=2sinθ
          (θ為參數(shù)),把曲線c1上所有點(diǎn)的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
          2
          ρcos(θ-
          π
          4
          )=4

          (1)求曲線c2的普通方程,并指明曲線類型;
          (2)過(1,0)點(diǎn)與l垂直的直線l1與曲線c2相交與A、B兩點(diǎn),求弦AB的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案