日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)已知函數(shù)數(shù)學(xué)公式.?dāng)?shù)列{an}滿足:an>0,a1=1,且數(shù)學(xué)公式,記數(shù)列{bn}的前n項(xiàng)和為Sn,且數(shù)學(xué)公式.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請證明;否則,說明理由.
          (Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

          解:(Ⅰ)因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/75779.png' />,
          所以,
          ,
          .(4分)
          因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/75784.png' />,
          當(dāng)n=1時,,
          當(dāng)n≥2時,
          所以.(6分)
          又因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/75788.png' />,
          所以令,
          ;
          得到與t∈N*矛盾,
          所以b4+b6不在數(shù)列{bn}中.(8分)
          (Ⅱ)充分性:若存在整數(shù)m≥-1,使c1=md.
          設(shè)cr,ct為數(shù)列{cn}中不同的兩項(xiàng),
          則cr+ct=c1+(r-1)d+c1+(t-1)d=c1+(r+m+t-2)d=c1+[(r+m+t-1)-1]d.
          又r+t≥3且m≥-1,所以r+m+t-1≥1.
          即cr+ct是數(shù)列{cn}的第r+m+t-1項(xiàng).(11分)
          必要性:若數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng),
          則cs=c1+(s-1)d,ct=c1+(t-1)d,
          (s,t為互不相同的正整數(shù))
          則cs+ct=2c1+(s+t-2)d,令cs+ct=cl
          得到2c1+(s+t-2)d=c1+(l-1)d(n,t,s∈N*),
          所以c1=(l-s-t+1)d,
          令整數(shù)m=l-s-t+1,所以c1=md. (14分)
          下證整數(shù)m≥-1
          若設(shè)整數(shù)m<-1,則-m≥2.令k=-m,
          由題設(shè)取c1,ck使c1+ck=cr(r≥1)
          即c1+c1+(k-1)d=c1+(r-1)d,
          所以md+(-m-1)d=(r-1)d
          即rd=0與r≥1,d≠0相矛盾,所以m≥-1.
          綜上,數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)的充要條件是存在整數(shù)m≥-1,使c1=md.(16分)
          分析:(Ⅰ)由題意知,,所以.再由題設(shè)條件可以導(dǎo)出,由此可知b4+b6不在數(shù)列{bn}中.
          (Ⅱ)先證充分性:若存在整數(shù)m≥-1,使c1=md.再證必要性:若數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng),則cs=c1+(s-1)d,ct=c1+(t-1)d.
          點(diǎn)評:本題考查數(shù)列的性質(zhì)和綜合運(yùn)用,難度較大.解題時要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (09年大豐調(diào)研)(16分)

          已知函數(shù),數(shù)列滿足對于一切,且.?dāng)?shù)列滿足,設(shè)

          (Ⅰ)求證:數(shù)列為等比數(shù)列,并指出公比;

          (Ⅱ)若,求數(shù)列的通項(xiàng)公式;

          (Ⅲ)若為常數(shù)),求數(shù)列從第幾項(xiàng)起,后面的項(xiàng)都滿足

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          . (本小題共14分)

                   已知函數(shù),數(shù)列是公差為d的等差數(shù)列,是公比為q

          )的等比數(shù)列.若

               (Ⅰ)求數(shù)列,的通項(xiàng)公式;     

          (Ⅱ)設(shè)數(shù)列對任意自然數(shù)n均有,求 的值.

               

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省東莞市高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分14分)

          已知函數(shù),數(shù)列滿足:N*

          (1)求數(shù)列的通項(xiàng)公式;

          (2)令函數(shù),數(shù)列滿足:,N*),

          求證:對于一切的正整數(shù),都滿足:

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三11月月考理科數(shù)學(xué)試卷 題型:解答題

          (本題滿分13分) 已知函數(shù),數(shù)列滿足,

             (Ⅰ)求數(shù)列的通項(xiàng)公式

             (Ⅱ)求;

             (Ⅲ)求證:

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年北京市東城區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:選擇題

          已知函數(shù)若數(shù)列滿足,且是遞增數(shù)列,則實(shí)數(shù)的取值范圍是(     )

               A.         B.         C.         D.

           

          查看答案和解析>>

          同步練習(xí)冊答案