日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“=+”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.

          【答案】分析:本題考查的知識點(diǎn)是類比推理,在由平面幾何的性質(zhì)類比推理空間立體幾何性質(zhì)時,我們常用的思路是:由平面幾何中點(diǎn)的性質(zhì),類比推理空間幾何中線的性質(zhì);由平面幾何中線的性質(zhì),類比推理空間幾何中面的性質(zhì);由平面幾何中面的性質(zhì),類比推理空間幾何中體的性質(zhì);故由:“直角三角形中,直角邊邊長為a,b,斜邊邊長為c,直角三角形具有性質(zhì):c2=a2+b2.”(邊的性質(zhì)),類比到空間可得的結(jié)論是“在直角三棱錐中,直角面面積分別為S1,S2,S3,斜面面積為S”,S12+S22+S32=S2
          解答:解:(以下僅供參考,不同結(jié)論請酌情給分.每個正確結(jié)論給(2分),證明給5分)  可以得出有以下結(jié)論:
          (Ⅰ)三個側(cè)面OAB、OAC、OBC兩兩互相垂直(或OA⊥BC、OB⊥AC、OC⊥AB)
          (Ⅱ)=++(H為△ABC的重心)
          (Ⅲ)S△OAB2+S△OAB2+S△OBC2=S△ABC2
          以下給出具體的證明:
          (1)證明:∵OA⊥OC,OB⊥OC∴OC⊥平面OAB
          ∴平面OAC⊥平面OAB  平面OBC⊥平面OAB 同理可證平面OBC⊥平面OAC

          (2)證明:如圖連接AH并延長AH交BC于D連接OD
          ∵OA⊥面OBC∴OA⊥OD
          在Rt△ABC中∵OH⊥OD∴OH•AD=AO•OD
          ∴OH2•AD2=AO2•OD2
          又∵AD2=OA2+OD2=+
          ∵AD⊥BC,由三垂線定理得:BC⊥OD
          ∴在Rt△OBC中  OD2•BC2=BO2•CO2
          ∴OD2=又∵BC2=BO2+CO2
          =+②由①②得:=++

          (Ⅳ) 證明:如圖(延用(Ⅸ)中的字母a,b,c)∵H為垂心∴AD⊥BC
          又∵OA、OB、OC兩兩垂直∴S△OAB=ab   S△OBC=bc  S△OAC=ac  
          S△ABC=BC•AD
          ∴S△OAB2+S△OAC2+S△OBC2=( a2 b2+b2 c2+a2 c2)=a2(b2+c2)+b2 c2…①
          又∵在Rt△BOC中,OD⊥BC∴OB2•OC2=b2 c2=OD2•BC2=OD2•(b2+c2)…②
          ∴②代入①得:S△OAB2+S△OBC2+S△OAC2=(b2+c2)•AD2=BC2•AD2=S△ABC2
          點(diǎn)評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時,常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),|AB|=2
          3
          |AC|=
          1
          2
          ,以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C.
          (I)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
          (II)是否存在不平行于AB的直線l與(I)中橢圓交于不同兩點(diǎn)M、N,使(
          DM
          +
          DN
          )•
          MN
          =0
          ?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角三角形ABC中,斜邊AB=4.設(shè)角A=θ,△ABC的面積為S
          (1)試用θ表示S,并求S的最大值;
          (2)計(jì)算
          AB
          AC
          +
          BC
          BA
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:在直角三角形ABC中,已知AB=a,∠ACB=30°,∠B=90°,D為AC的中點(diǎn),E為BD的中點(diǎn),AE的延長線交BC于F,將△ABD沿BD折起,二面角A′-BD-C的大小記為θ.

          (1)求證:平面A′EF⊥平面BCD;
          (2)當(dāng)A′B⊥CD時,求sinθ的值;
          (3)在(2)的條件下,求點(diǎn)C到平面A′BD的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴州模擬)如圖,在直角三角形ABC的斜邊AB上有一點(diǎn)P,它到這個三角形兩條直角邊的距離分別為4和3,則△ABC面積的最小值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),數(shù)學(xué)公式數(shù)學(xué)公式,以A、B為焦點(diǎn)的橢圓經(jīng)過點(diǎn)C.
          (I)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
          (II)是否存在不平行于AB的直線l與(I)中橢圓交于不同兩點(diǎn)M、N,使數(shù)學(xué)公式?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案