日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知命題p:“對任意實數(shù)x都有ax2+ax+1>0恒成立”,命題q:“方程(a-1)x2+(3-a)y2-(3-a)(a-1)=0表示焦點在x軸上的橢圓”.
          (1)若命題p是真命題,求實數(shù)a的取值范圍;
          (2)若命題p,q中有且只有一個真命題,求實數(shù)a的取值范圍.
          分析:(1)命題p是真命題時,分a=0時和a≠0時兩種情況加以討論,結合一元二次不等式恒成立的條件解關于a的不等式,即可得到實數(shù)a的取值范圍;
          (2)由焦點在x軸上橢圓的形式,建立關于a的不等式,解出當q為真命題時a的取值范圍.然后分p真q假和p假q真兩種情況,分別找出符合題意a的范圍,再綜合可得滿足條件a的取值范圍.
          解答:解:(1)命題p是真命題,即對任意實數(shù)x都有ax2+ax+1>0恒成立
          ∴①a=0時,原不等式變成1>0,顯然恒成立;
          ②當a≠0時,
          a>0
          △=a2-4a<0
          ,解之得0≤a<4
          綜上所述,得實數(shù)a的取值范圍是[0,4];
          (2)若命題q為真,則
          3-a>0
          a-1>0
          3-a>a-1
          ,解之得1<a<2,
          ∵命題p,q中有且只有一個真命題,
          ∴當p為真命題、q為假命題時,a∈[0,1]∪[2,4);
          當q為真命題、p為假命題時,找不到a符合條件的a值
          綜上所述,可得實數(shù)a的取值范圍為[0,1]∪[2,4).
          點評:本題給出關于一元二次不等式和橢圓的兩個命題,求命題p為真時實數(shù)a的取值范圍,并求p、q只有一個真命題時實數(shù)a的范圍.著重考查了一元二次不等式恒成立、橢圓的標準方程和命題真假的判斷等知識,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          有下列命題:
          ①函數(shù)y=cos(x-
          π
          4
          )cos(x+
          π
          4
          )的圖象中,相鄰兩個對稱中心的距離為π;
          ②函數(shù)y=
          x+3
          x-1
          的圖象關于點(-1,1)對稱;
          ③關于x的方程ax2-2ax-1=0有且僅有一個實數(shù)根,則實數(shù)a=-1;
          ④已知命題p:對任意的x∈R,都有sinx≤1,則非p:存在x∈R,使得sinx>1.
          其中所有真命題的序號是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知命題p:“對任意的x∈R,x3-x2+1≤0”,則命題¬p是
          存在x∈R,x3-x2+1>0
          存在x∈R,x3-x2+1>0

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          有下列命題:
          ①在函數(shù)y=cos(x-
          π
          4
          )cos(x+
          π
          4
          )的圖象中,相鄰兩個對稱中心的距離為π;
          ②函數(shù)y=
          x+3
          x-1
          的圖象關于點(-1,1)對稱;
          ③關于x的方程ax2-2ax-1=0有且僅有一個實數(shù)根,則實數(shù)a=-1;
          ④已知命題p:對任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
          ⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
          其中所有真命題的序號是
          ③④
          ③④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•焦作一模)下列命題為真命題的是(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知命題p:曲線方程
          x2
          2-k
          +
          y2
          5-k
          =1
          表示焦點在y軸的雙曲線;
          命題q:已知
          a
          =(x,-k,1),
          b
          =(x,x,k+3)
          ,對任意x∈R,
          a
          b
          >0
          恒成立.
          (Ⅰ) 寫出命題q的否定形式¬q;
          (Ⅱ) 求證:命題p成立是命題q成立的充分不必要條件.

          查看答案和解析>>

          同步練習冊答案