日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=
          2x2+2xx2+1
          ,函數(shù)g(x)=ax2+5x-2a.
          (1)求f(x)在[0,1]上的值域;
          (2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.
          分析:對于(1)有函數(shù)式化簡后用換元法求值域.
          對于(2)由題意可知對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,等價于f(x)的值域[0,2]是函數(shù)y=g(x)在x∈[0,1]的值域的子集.
          解答:解:(1)y=
          2x2+2x
          x2+1
          =
          2(x2+1)+2x-2
          x2+1
          =2+
          2(x-1)
          x2+1
          ,
          令x-1=t,則x=t+1,t∈[-1,0],y=2+
          2t
          t2+2t+2
          ,
          當(dāng)t=0時,y=2;當(dāng)t∈[-1,0),y=2+
          2
          t+
          2
          t
          +2
          ,
          由對勾函數(shù)的單調(diào)性得y∈[0,2),故函數(shù)在[0,1]上的值域是[0,2];
          (2)f(x)的值域是[0,2],要g(x0)=f(x1)成立,則[0,2]⊆{y|y=g(x),x∈[0,1]}
          ①當(dāng)a=0時,x∈[0,1],g(x)=5x∈[0,5],符合題意;
          ②當(dāng)a>0時,函數(shù)g(x)的對稱軸為x=-
          5
          2a
          <0,故當(dāng)x∈[0,1]時,函數(shù)為增函數(shù),則g(x)的值域是[-2a,5-a],由條件知[0,2]⊆[-2a,5-a],∴
          a>0
          -2a≤0
          5-a≥2
          ?0<a≤3;
          ③當(dāng)a<0時,函數(shù)g(x)的對稱軸為x=-
          5
          2a
          >0.
          當(dāng)0<-
          5
          2a
          <1,即a<-
          5
          2
          時,g(x)的值域是[-2a,
          -8a2-25
          4a
          ]或[5-a,
          -8a2-25
          4a
          ],
          由-2a>0,5-a>0知,此時不合題意;當(dāng)-
          5
          2a
          ≥1,即-
          5
          2
          ≤a<0時,g(x)的值域是[-2a,5-a],
          由[0,2]⊆[-2a,5-a]知,由-2a>0知,此時不合題意.
          綜合①②③得0≤a≤3.
          點評:此題(1)考查考查了有解析式選擇換元法求函數(shù)值域.
          此題(2)考查了等價轉(zhuǎn)化思想及判斷含有字母參數(shù)集合關(guān)系時分類討論的思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給定實數(shù)a(a≠
          12
          ),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對稱的圖象記為C2
          (Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
          (Ⅱ)對于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點?若存在,請求出公共點的坐標(biāo);若不若存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          (2x+1)(3x+a)
          x
          為奇函數(shù),則a=
          -
          3
          2
          -
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          -2x+m2x+n
          (m、n為常數(shù),且m∈R+,n∈R).
          (Ⅰ)當(dāng)m=2,n=2時,證明函數(shù)f(x)不是奇函數(shù);
          (Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時函數(shù)f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案