日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)等差數(shù)列{an}中,若a3+a4+a5=12,則4a3+2a6=
          24
          24
          ,若數(shù)列{bn}的前n項和為Sn=3n-1,則通項公式bn=
          2•3n-1
          2•3n-1
          分析:根據(jù)等差數(shù)列的性質(zhì)化簡已知的等式,得到a4的值,然后把所求式子利用等差數(shù)列的通項公式化簡后,將a4的值代入即可求出值;當(dāng)n=1時,S1=b1,根據(jù)前n項和公式求出b1的值;當(dāng)n大于等于2時,利用遞推式bn=Sn-Sn-1推導(dǎo)出通項公式bn,并把b1的值代入檢驗也滿足,即可得到數(shù)列的通項公式.
          解答:解:∵a3+a4+a5=3a4=12,∴a4=4,
          則4a3+2a6=4(a1+2d)+2(a1+5d)=6(a1+3d)=6a4=24;
          ∵數(shù)列{bn}的前n項和為Sn=3n-1,
          當(dāng)n=1時,b1=S1=3-1=2,
          當(dāng)n≥2時,bn=Sn-Sn-1=(3n-1)-(3n-1-1)=3n-1•(3-1)=2•3n-1
          把b1代入滿足此通項公式,
          則通項公式bn=2•3n-1
          故答案為:24;2•3n-1
          點評:此題考查了等差數(shù)列的通項公式,等差數(shù)列的性質(zhì),以及數(shù)列的遞推式,熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)等差數(shù)列{an}的前3項和為21,前6項的和為24,則其首項為
          9
          9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)等差數(shù)列{an}中,首項a1=1,公差d≠0,已知數(shù)列ak1,ak2ak3,…,akn,…成等比數(shù),其中k1=1,k2=2,k3=5.
          (1)求數(shù)列{an},{kn}的通項公式;
          (2)當(dāng)n∈N+,n≥2時,求和:Sn=
          a1
          2k1-1
          +
          a2
          2k2-1
          +…+
          an
          2kn-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)等差數(shù)列{an}的前n項和為Sn,S30=12S10,S10+S30=130,則S20=( 。
          A、40B、50C、60D、70

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)等差數(shù)列{an}公差不為零,首項a1=1,a1,a2,a5是等比數(shù)列,則數(shù)列{an}的前10項和是( 。
          A、90B、100C、145D、190

          查看答案和解析>>

          同步練習(xí)冊答案