日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文科)已知數(shù)列{an}的首項a1=1,前n項和為Sn,且an+1=2Sn+2n-1(n?N*
          (1)設(shè)bn=an+2n(n?N*),證明數(shù)列{bn}是等比數(shù)列;
          (2)設(shè) Cn=
          2n(1+3n-an)(1+3n+1-an+1)
          (n∈N*),求Tn=c1+c2+…+cn
          分析:1)由an+1=2Sn+2n+1-1(n≥1),當n≥2時,an=2Sn-1+2n-1,兩式相減得an+1=3an+2n(n≥2).從而bn+1=3bn(n≥2),可證
          解:(2)由(1)得an=3n-2n,則cn=
          2n
          (1+3n-an)(1+3n+1-an+1)
          =
          2n
          (1+2n)(1+2n+1)
          =
          1
          1+2n
          -
          1
          1+2n+1
          ,利用裂項相消可求和
          解答:(1)證明:∵an+1=2Sn+2n+1-1(n≥1),
          當n≥2時,an=2Sn-1+2n-1,兩式相減得an+1=3an+2n(n≥2).
          從而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2).
          ∵S2=3S1+22-1,即a1+a2=3a1+3,∴a2=2a1+3=5,
          ∴b2≠0,bn≠0,
          b2
          b1
          =
          a2+4
          a1+2
          =
          9
          3
          =3
          .故
          bn+1
          bn
          =3
          (n=1,2,3…)
          ∴數(shù)列{bn}是公比為3,首項為3的等比數(shù)列.
          (2)解:由(1)知,bn=3•3n-1=3n,bn=an+2n得an=3n-2n,
          cn=
          2n
          (1+3n-an)(1+3n+1-an+1)
          =
          2n
          (1+2n)(1+2n+1)
          ,
          cn=
          2n
          (1+2n)(1+2n+1)
          =
          1
          1+2n
          -
          1
          1+2n+1

          c1+c2+…+cn=
          1
          1+21
          -
          1
          1+22
          +
          1
          1+22
          -
          1
          1+23
          +…+
          1
          1+2n
          -
          1
          1+2n+1

          =
          1
          3
          -
          1
          1+2n+1
          點評:本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項公式,等比數(shù)列的定義的應(yīng)用及通項公式的求解,裂項求解數(shù)列的和,屬于數(shù)列知識的綜合應(yīng)用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學二模試卷(文理合卷)(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年高考數(shù)學專項復習:創(chuàng)新題(3)(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年江蘇省高考數(shù)學模擬專題訓練:解答題(解析版) 題型:解答題

          定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
          (1)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
          (2)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
          (3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項.
          [理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

          查看答案和解析>>

          同步練習冊答案