日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,,為橢圓的兩個(gè)焦點(diǎn),點(diǎn)在橢圓上,且的周長(zhǎng)為
          (Ⅰ)求橢圓的方程
          (Ⅱ)設(shè)直線與橢圓相交于兩點(diǎn),若為坐標(biāo)原點(diǎn)),求證:直線與圓相切.
          (Ⅰ);(Ⅱ)詳見解析.

          試題分析:(Ⅰ)借助題中的已知條件以及、三者之間的相互關(guān)系確定、的值,從而確定橢圓的方程;(Ⅱ)對(duì)直線的斜率存在與不存在這兩種情況進(jìn)行討論,即根據(jù)這個(gè)條件確定直線傾斜角為時(shí),直線的方程,以及根據(jù)這個(gè)條件在斜率存在時(shí)方程之間的等量關(guān)系,并借助圓心(原點(diǎn))到直線的距離等于圓的半徑確定直線與圓相切.
          試題解析:解(Ⅰ)由已知得,
          解得,又
          所以橢圓的方程為            4分
          (Ⅱ)證明:有題意可知,直線不過(guò)坐標(biāo)原點(diǎn),設(shè)的坐標(biāo)分別為
          (。┊(dāng)直線軸時(shí),直線的方程為

               
          ,解得
          故直線的方程為
          因此,點(diǎn)到直線的距離為
          又圓的圓心為,半徑
          所以直線與圓相切                     9分
          (ⅱ)當(dāng)直線不垂直于軸時(shí),設(shè)直線的方程為
           得



            

                 ①
          又圓的圓心為,半徑
          圓心到直線的距離為
              ②
          將①式帶入②式得

          所以
          因此,直線與圓相切                   14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,)在橢圓C上.
          (I)求橢圓C的方程;
          (II)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且的面積為,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,A,B是橢圓的兩個(gè)頂點(diǎn), ,直線AB的斜率為.求橢圓的方程;(2)設(shè)直線平行于AB,與x,y軸分別交于點(diǎn)M、N,與橢圓相交于C、D,
          證明:的面積等于的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為的正方形.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,等腰梯形中,. 以,為焦點(diǎn),且過(guò)點(diǎn)的雙曲線的離心率為;以為焦點(diǎn),且過(guò)點(diǎn)的橢圓的離心率為,則的取值范圍為(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          為橢圓上一點(diǎn),為兩焦點(diǎn),,則橢圓的離心率        .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知橢圓,是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)滿足,聯(lián)結(jié),交橢圓于點(diǎn)

          (1)當(dāng)時(shí),設(shè),求的值;
          (2)若為常數(shù),探究滿足的條件?并說(shuō)明理由;
          (3)直接寫出為常數(shù)的一個(gè)不同于(2)結(jié)論類型的幾何條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓,直線l為圓的一條切線,且經(jīng)過(guò)橢圓C的右焦點(diǎn),直線l的傾斜角為,記橢圓C的離心率為e.
          (1)求e的值;
          (2)試判定原點(diǎn)關(guān)于l的對(duì)稱點(diǎn)是否在橢圓上,并說(shuō)明理由。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案