日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,a1=0,且對(duì)任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k.
          (Ⅰ)證明a4,a5,a6成等比數(shù)列;
          (Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅲ)記,證明
          【答案】分析:(I)由題設(shè)可知,a2=2,a3=4,a4=8,a5=12,a6=18.從而,由此可知a4,a5,a6成等比數(shù)列.
          (II)由題設(shè)可得a2k+1-a2k-1=4k,k∈N*.所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)+(a3-a1)=2k(k+1),k∈N*.由此可以推出數(shù)列{an}的通項(xiàng)公式.
          (III)由題設(shè)條件可知a2k+1=2k(k+1),a2k=2k2,然后分n為偶數(shù)和n為奇數(shù)兩種情況進(jìn)行討論,能夠證明
          解答:(I)證明:由題設(shè)可知,a2=a1+2=2,a3=a2+2=4,
          a4=a3+4=8,
          a5=a4+4=12,
          a6=a5+6=18.
          從而
          所以a4,a5,a6成等比數(shù)列;
          (II)解:由題設(shè)可得a2k+1-a2k-1=4k,k∈N*
          所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1
          =4k+4(k-1)+…+4×1
          =2k(k+1),k∈N*
          由a1=0,得a2k+1=2k(k+1),
          從而a2k=a2k+1-2k=2k2
          所以數(shù)列{an}的通項(xiàng)公式為
          或?qū)憺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124224241189796/SYS201310251242242411897019_DA/4.png">,n∈N*
          (III)證明:由(II)可知a2k+1=2k(k+1),a2k=2k2,
          以下分兩種情況進(jìn)行討論:
          (1)當(dāng)n為偶數(shù)時(shí),設(shè)n=2m(m∈N*
          若m=1,則,若m≥2,

          =
          =
          所以,
          從而,;
          (2)當(dāng)n為奇數(shù)時(shí),設(shè)n=2m+1(m∈N*

          =
          所以,從而,.
          綜合(1)和(2)可知,對(duì)任意n≥2,n∈N*,有
          點(diǎn)評(píng):本題主要考查等差數(shù)列的定義及前n項(xiàng)和公式、等比數(shù)列的定義、數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證能力、綜合分析和解決問(wèn)題的能力及分類(lèi)討論的思想方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,
          a
           
          1
          =1
          an=
          1
          2
          an-1+1
          (n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
          2-21-n
          2-21-n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a 1=
          1
          3
          ,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
          1
          an
          (n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{
          an
          n
          }的前n項(xiàng)和為T(mén)n,證明:
          1
          3
          Tn
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a=
          12
          ,前n項(xiàng)和Sn=n2an,求an+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

          (先在橫線(xiàn)上填上一個(gè)結(jié)論,然后再解答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為T(mén)n,證明:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案