【題目】已知函數(shù).
(1)時(shí),求
在
上的單調(diào)區(qū)間;
(2)且
,
均恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1) 的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;(2)
.
【解析】試題分析:(1)求出,令
在
內(nèi)求得
的范圍,可得函數(shù)
增區(qū)間,令
在
內(nèi)求得
的范圍,可得函數(shù)
的減區(qū)間;(2)
時(shí),
,即
;
時(shí),
,即
, 設(shè)
,分兩種情況研究函數(shù)的單調(diào)性,并求出
的最值,從而可得實(shí)數(shù)
的取值范圍.
試題解析:(1)時(shí),
,設(shè)
,
當(dāng)時(shí),
,則
在
上是單調(diào)遞減函數(shù),即則
在
上是單調(diào)遞減函數(shù),
∵∴
時(shí),
;
時(shí),
∴在上
的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;
(2) 時(shí),
,即
;
時(shí),
,即
;
設(shè)
則
時(shí),
,∵
,∴
在
上單調(diào)遞增
∴時(shí),
;
時(shí),
,∴
符合題意;
時(shí),
,
時(shí),
,∴
在
上單調(diào)遞減,
∴當(dāng)時(shí),
,與
時(shí),
矛盾;舍
時(shí),設(shè)
為
和0中的最大值,當(dāng)
時(shí),
,
∴在
上單調(diào)遞減,∴當(dāng)
時(shí),
,與
時(shí),
矛盾;舍
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856308)(12分)
如圖,∠ABC=,O為AB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(Ⅰ)求證:平面PBD⊥平面COD;
(Ⅱ)求點(diǎn)O到平面BDC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018四川綿陽(yáng)南山中學(xué)高三二診熱身考試】以下四個(gè)命題中:
①某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布
,已知
,若按成績(jī)分層抽樣的方式抽取100分試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取15分;
②已知命題,
,則
,
;
③在上隨機(jī)取一個(gè)數(shù)
,能使函數(shù)
在
上有零點(diǎn)的概率為
;
④在某次飛行航程中遭遇惡劣氣候,用分層抽樣的20名男乘客中有5名暈機(jī),12名女乘客中有8名暈機(jī),在檢驗(yàn)這些乘客暈機(jī)是否與性別有關(guān)時(shí),采用獨(dú)立性檢驗(yàn),有97%以上的把握認(rèn)為與性別有關(guān).
0.15 | 0.1 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
其中真命題的序號(hào)為( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:關(guān)于x的二次方程x2+(a+1)x+a-2=0的一個(gè)根大于零,另一根小于零;命題q:不等式2x2+x>2+ax對(duì)x∈(-∞,-1)恒成立.如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為
, 若橢圓上一點(diǎn)
滿足
,且橢圓
過點(diǎn)
,過點(diǎn)
的直線
與橢圓
交于兩點(diǎn)
.
(1)求橢圓的方程;
(2)若點(diǎn)是點(diǎn)
在
軸上的垂足,延長(zhǎng)
交橢圓
于
,求證:
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過點(diǎn)
,且離心率為
.
(I)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
交于
兩點(diǎn).若直線
上存在點(diǎn)
,使得四邊形
是平行四邊形,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面
是邊長(zhǎng)為2的正方形,
底面
,
,且
.
(Ⅰ)記線段的中點(diǎn)為
,在平面
內(nèi)過點(diǎn)
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“過大年,吃水餃”是我國(guó)不少地方過春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).
(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布
,利用該正態(tài)分布,求
落在
內(nèi)的概率;
②將頻率視為概率,若某人從某超市購(gòu)買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為
,求
的分布列和數(shù)學(xué)期望.
附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;
②若,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在四邊形ABCD中, ,
是邊長(zhǎng)為4的正三角形,把
沿AC折起到
的位置,使得平面PAC
平面ACD,如圖乙所示,點(diǎn)
分別為棱
的中點(diǎn).
(1)求證: 平面
;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com