日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>b>0)
          的左、右焦點分別為F1、F2,P為左支一點,P到左準線的距離為d,若d,|PF1|,|PF2|成等比數(shù)列,則該雙曲線的離心率的取值范圍是( 。
          分析:將等比數(shù)列的概念與雙曲線的第二定義結(jié)合,再利用雙曲線的簡單性質(zhì)得到|PF1|與其離心率e的關(guān)系,通過不等式|PF1|≥c-a即可求得該雙曲線的離心率的取值范圍.
          解答:解:∵該雙曲線的左、右焦點分別為F1、F2,又P為左支一點,則|PF2|-|PF1|=2a,
          設(shè)雙曲線的離心率為e,依題意,
          |PF1|
          d
          =
          |PF2|
          |PF1|
          =e,
          |PF2|
          |PF1|
          =e,
          |PF2|-|PF1|
          |PF1|
          =e-1,即
          2a
          |PF1|
          =e-1,
          ∴|PF1|=
          2a
          e-1
          ,又|PF1|≥c-a,
          2a
          e-1
          ≥c-a,又c>a,
          ∴0<
          c-a
          2a
          1
          e-1
          ,即
          1
          2
          (e-1)≤
          1
          e-1

          ∴(e-1)2
          2
          ,又e=
          c
          a
          >1
          ∴1<e≤1+
          2

          故選D.
          點評:本題考查等比數(shù)列的性質(zhì),考查雙曲線的第二定義及雙曲線的簡單性質(zhì),突出轉(zhuǎn)化思想與不等式的應(yīng)用,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          7
          =1
          ,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
          5
          ,則該雙曲線的漸近線方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(b>a>0)
          ,O為坐標原點,離心率e=2,點M(
          5
          3
          )
          在雙曲線上.
          (1)求雙曲線的方程;
          (2)若直線l與雙曲線交于P,Q兩點,且
          OP
          OQ
          =0
          .問:
          1
          |OP|2
          +
          1
          |OQ|2
          是否為定值?若是請求出該定值,若不是請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
          (-2,1)
          (-2,1)
          ;
          (2)已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1的一條漸近線方程為y=
          4
          3
          x,則雙曲線的離心率為
          5
          3
          5
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)滿足
          a1
          b
          2
           |=0
          ,且雙曲線的右焦點與拋物線y2=4
          3
          x
          的焦點重合,則該雙曲線的方程為
           

          查看答案和解析>>

          同步練習冊答案