(本大題滿分13分)
在△ABC中,,點(diǎn)B是橢圓
的上頂點(diǎn),l是雙曲線
位于x軸下方的準(zhǔn)線,當(dāng)AC在直線l上運(yùn)動(dòng)時(shí).
(1)求△ABC外接圓的圓心的軌跡E的方程;
(2)過(guò)定點(diǎn)F(0,)作互相垂直的直線l1、l2,分別交軌跡E于點(diǎn)M、N和點(diǎn)R、Q.求四邊形MRNQ的面積的最小值.
72.
(1)解:由橢圓方程及雙曲線方程
可得點(diǎn)B(0,2),直線l的方程是
.
,且AC在直線l上運(yùn)動(dòng).
可設(shè),則AC的垂直平分線方程為
①
AB的垂直平分線方程為 ②
∵P是△ABC的外接圓圓心,點(diǎn)P的坐標(biāo)(x,y)滿足方程①和②.
由①和②聯(lián)立消去m得:,即
.
故圓心P的軌跡E的方程為
(2)解:如圖,直線l1和l2的斜率存在且不為零,設(shè)l1的方程為
∵l1⊥l2,∴l2的方程為
由得
,∴直線l1與軌跡E交于兩點(diǎn).
設(shè)M(x1,y1), N(x2,y2),則
∴
同理可得:
∴四邊形MRNQ的面積
≥
當(dāng)且僅當(dāng),即
時(shí),等號(hào)成立.故四邊形MRNQ的面積的最小值為72.
【說(shuō)明】湖北省黃岡中學(xué)2009屆高三2月月考數(shù)學(xué)試題(理)學(xué)科網(wǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本大題滿分13分)本題共有2個(gè)小題,第1小題滿分5分,第2小題滿分8分.
如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,骨架把圓柱底面8等份,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).
(1)當(dāng)圓柱底面半徑
取何值時(shí),
取得最大值?并求出該
最大值(結(jié)果精確到0.01平方米);
(2)在燈籠內(nèi),以矩形骨架的頂點(diǎn)為點(diǎn),安裝一些霓虹燈,當(dāng)燈籠的底面半徑為0.3米時(shí),求圖中兩根直線與
所在異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本大題滿分13分)已知數(shù)列,設(shè)
,數(shù)列
.
(1)求證:是等差數(shù)列;
(2)求數(shù)列的前n項(xiàng)和Sn;
(3)若一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三第一學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本大題滿分13分)如圖,現(xiàn)有一塊半徑為2m,圓心角為的扇形鐵皮
,欲從其中裁剪出一塊內(nèi)接五邊形
,使點(diǎn)
在
弧上,點(diǎn)
分別在半徑
和
上,四邊形
是矩形,點(diǎn)
在弧
上,
點(diǎn)在線段
上,四邊形
是直角梯形.現(xiàn)有如下裁剪方案:先使矩形
的面積達(dá)到最大,在此前提下,再使直角梯形
的面積也達(dá)到最大.
(Ⅰ)設(shè),當(dāng)矩形
的面積最大時(shí),求
的值;
(Ⅱ)求按這種裁剪方法的原材料利用率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江西省高二下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
.(本大題滿分13分)
已知點(diǎn)是橢圓
右焦點(diǎn),點(diǎn)
、
分別是x軸、 y上的動(dòng)點(diǎn),且滿足
,若點(diǎn)
滿足
.
(1)求點(diǎn)的軌跡
的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線與點(diǎn)
的軌跡
交于
、
兩點(diǎn),直線
、
與直線
分別交于點(diǎn)
、
(其中
為坐標(biāo)原點(diǎn)),試判斷
是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010屆湖南省高三第二次月考理科數(shù)學(xué)卷 題型:解答題
(本大題滿分13分)設(shè)函數(shù)是定義域在
上的單調(diào)函數(shù),且對(duì)于任意正數(shù)
有
,已知
.
(1)求的值;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足:
,其中
是數(shù)列
的前n項(xiàng)的和,求數(shù)列
的通項(xiàng)公式;
(3)在(2)的條件下,是否存在正數(shù),使
對(duì)一切
成立?若存在,求出M的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com