日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m+n≠0時(shí),有
          f(m)+f(n)
          m+n
          >0

          (1)解不等式f(x+
          1
          2
          )<f(1-x)
          ;
          (2)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.
          分析:(1)由f(x)是奇函數(shù)和單調(diào)性的定義,可得f(x)在[-1,1]上是增函數(shù),再利用定義的逆用求解;
          (2)先由(1)求得f(x)的最大值,再轉(zhuǎn)化為關(guān)于a的不等式恒成立問(wèn)題求解.
          解答:解:(1)任取x1,x2∈[-1,1]且x1<x2,則f(x2)-f(x1)=f(x2)+f(-x1)=
          f(x2)+f(-x1)
          x2+(-x1)
          •(x2-x1)>0

          ∴f(x2)>f(x1),∴f(x)為增函數(shù)
          f(x+
          1
          2
          )<f(1-x)

          -1≤x+
          1
          2
          ≤1
          -1≤1-x≤1
          x+
          1
          2
          <1-x

          0≤x<
          1
          4
          ,
          即不等式f(x+
          1
          2
          )<f(1-x)
          的解集為[0,
          1
          4
          )

          (2)由于f(x)為增函數(shù),∴f(x)的最大值為f(1)=1,
          ∴f(x)≤t2-2at+1對(duì)x∈[-1,1],a∈[-1,1]恒成立,等價(jià)于t2-2at+1≥1對(duì)任意的a∈[-1,1]恒成立,
          即t2-2at≥0對(duì)任意的a∈[-1,1]恒成立.
          把y=t2-2at看作a的函數(shù),由于a∈[-1,1]知其圖象是一條線段.
          ∵t2-2at≥0對(duì)任意的a∈[-1,1]恒成立
          t2-2×(-1)×t≥0
          t2-2×1×t≥0

          t2+2t≥0
          t2-2t≥0

          解得t≤-2或t=0或t≥2.
          點(diǎn)評(píng):本題主要考查單調(diào)性和奇偶性的綜合應(yīng)用及函數(shù)最值、恒成立問(wèn)題的轉(zhuǎn)化化歸思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
          f(a)+f(b)
          a+b
          >0

          (1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
          (2)解不等式:f(
          1
          x-1
          )>0,x∈(0,+∞);
          (3)若f′(x)=-2x+1+
          1
          x
          =-
          2x2-x-1
          x
          對(duì)所有f'(x)=0,任意x=-
          1
          2
          恒成立,求實(shí)數(shù)x=1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
          12
          3)
          ,c=f(0.2-0.6),則a,b,c的大小關(guān)系
          a>b>c
          a>b>c

          查看答案和解析>>

          同步練習(xí)冊(cè)答案