日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在多面體ABCDEFG中,四邊形ABCD是邊長為2的正方形,平面ABG、平面ADF、平面CDE都與平面ABCD垂直,且ΔABG, ΔADF, ΔCDE都是正三角形.

          (I)求證:AC// EF ;

          (II) 求多面體ABCDEFG的體積.

           

          【答案】

          (Ⅰ) 證明:方法一,如圖,分別取AD、CD的中點P、Q,連接FP,EQ.

          ∵△和△是為2的正三角形,

          ∴FP⊥AD,EQ⊥CD,且FP=EQ=.

          又∵平面、平面都與平面垂直,

          ∴FP⊥平面, EQ⊥平面,∴FP∥QE且FP=EQ,

          ∴四邊形EQPF是平行四邊形,∴EF∥PQ.   ……………………….……..4分

          ∵ PQ是的中位線,∴PQ∥AC,

          ∴ EF∥AC ………………………..……..6分

          方法二,以A點作為坐標原點,以AB所在直線為x軸,以AD所在直線為y軸,過點A垂直于平面的直線為z軸,建立空間直角坐標系,如圖所示.

          根據(jù)題意可得,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),E(1,2,),

          F(0,1,),G(1,0,). …………………………………………..………………..4分

          =(2,2,0),=(1,1,0),則=,

          ,即有……………………………………………..……..6分

          (Ⅱ)

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1,AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          ,B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點,求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案