【題目】某省在2017年啟動了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數(shù)學(xué)、外語(簡稱語、數(shù)、外)為高考必考科目,從物理、化學(xué)、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學(xué)科中任選三門作為選考科目.該省某中學(xué)2017級高一新生共有990人,學(xué)籍號的末四位數(shù)從0001到0990.
(1)現(xiàn)從高一學(xué)生中抽樣調(diào)查110名學(xué)生的選考情況,問:采用什么樣的抽樣方法較為恰當(dāng)?(只寫出結(jié)論,不需要說明理由)
(2)據(jù)某教育機(jī)構(gòu)統(tǒng)計,學(xué)生所選三門學(xué)科在將來報考專業(yè)時受限制的百分比是不同的.該機(jī)構(gòu)統(tǒng)計了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.
設(shè)以上條形圖中受限百分比的均值為,標(biāo)準(zhǔn)差為
.如果一個學(xué)生所選三門學(xué)科專業(yè)受限百分比在區(qū)間
內(nèi),我們稱該選擇為“恰當(dāng)選擇”.該校李明同學(xué)選擇了化學(xué),然后從余下五門選考科目中任選兩門.問李明的選擇為“恰當(dāng)選擇"的概率是多少?(均值
,標(biāo)準(zhǔn)差
均精確到0.1)
(參考公式和數(shù)據(jù):,
)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡單范疇,賦予了旅游促進(jìn)跨區(qū)域融合的新理念. 而其帶來的設(shè)施互通、經(jīng)濟(jì)合作、人員往來、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來巨大的發(fā)展機(jī)遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機(jī)抽取甲、乙兩個景點(diǎn)10天的游客數(shù),統(tǒng)計得到莖葉圖如下:
(1)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長一段時期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內(nèi)任取4天,記其中游客數(shù)超過130人的天數(shù)為,求概率
;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(
)與雙曲線
(
,
)有相同的焦點(diǎn)
,點(diǎn)
是兩條曲線的一個交點(diǎn),且
軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程
(
為參數(shù)).直線
的參數(shù)方程
(
為參數(shù)).
(Ⅰ)求曲線在直角坐標(biāo)系中的普通方程;
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線
截直線
所得線段的中點(diǎn)極坐標(biāo)為
時,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,
,
平面
,
是
的中點(diǎn).
(Ⅰ)若是
的中點(diǎn),求證:平面
平面
;
(Ⅱ)若,求平面
與平面
所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩動圓和
(
),把它們的公共點(diǎn)的軌跡記為曲線
,若曲線
與
軸的正半軸的交點(diǎn)為
,且曲線
上的相異兩點(diǎn)
滿足:
.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求證
在
上是單調(diào)遞減函數(shù);
(2)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)討論函數(shù)的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為
升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘
米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動中的總用氧量為
升;
(1)將表示為
的函數(shù);
(2)若,求總用氧量
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一智能掃地機(jī)器人在A處發(fā)現(xiàn)位于它正西方向的B處和北偏東方向上的C處分別有需要清掃的垃圾,紅外線感應(yīng)測量發(fā)現(xiàn)機(jī)器人到B的距離比到C的距離少0.4m,于是選擇沿
路線清掃.已知智能掃地機(jī)器人的直線行走速度為0.2m/s,忽略機(jī)器人吸入垃圾及在B處旋轉(zhuǎn)所用時間,10秒鐘完成了清掃任務(wù).
(1)B、C兩處垃圾的距離是多少?(精確到0.1)
(2)智能掃地機(jī)器人此次清掃行走路線的夾角是多少?(用反三角函數(shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com