【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓
相交于不同的兩點(diǎn)
,
.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)
的軌跡
的方程;
(3)是否存在實(shí)數(shù),使得直線
與曲線
只有一個(gè)交點(diǎn)?若存在,求出
的取值范圍;若不存在,說明理由.
【答案】(1);(2)
;(3)存在,
或
.
【解析】
試題(1)通過將圓的一般式方程化為標(biāo)準(zhǔn)方程即得結(jié)論;(2)設(shè)當(dāng)直線
的方程為y=kx,通過聯(lián)立直線
與圓
的方程,利用根的判別式大于0、韋達(dá)定理、中點(diǎn)坐標(biāo)公式及參數(shù)方程與普通方程的相互轉(zhuǎn)化,計(jì)算即得結(jié)論;(3)通過聯(lián)立直線
與圓
的方程,利用根的判別式△=0及軌跡
的端點(diǎn)與點(diǎn)(4,0)決定的直線斜率,即得結(jié)論
試題解析:(1)由得
,
∴ 圓的圓心坐標(biāo)為
;
(2)設(shè),則
∵ 點(diǎn)為弦
中點(diǎn)即
,
∴即
,
∴ 線段的中點(diǎn)
的軌跡的方程為
;
(3)由(2)知點(diǎn)的軌跡是以
為圓心
為半徑的部分圓弧
(如下圖所示,不包括兩端點(diǎn)),且
,
,又直線
:
過定點(diǎn)
,
當(dāng)直線與圓
相切時(shí),由
得
,又
,結(jié)合上圖可知當(dāng)
時(shí),直線
:
與曲線
只有一個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(﹣1,0)、F2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1 , B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長(zhǎng)為2,過點(diǎn)F2的直線l與橢圓C相交于P,Q兩點(diǎn),且 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),
是函數(shù)
的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段
總是位于
,
兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
成立.運(yùn)用類比思想方法可知,若點(diǎn)
,
是函數(shù)
的圖象上任意不同兩點(diǎn),則類似地有__________成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求
的取值范圍;
(2)若直線交
軸負(fù)半軸于點(diǎn)
,交
軸正半軸于點(diǎn)
,
為坐標(biāo)原點(diǎn),設(shè)
的面積為
,求
的最小值及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線:
,
:
,和圓
相切,則
的取值范圍是( )
A. 或
B.
或
C. 或
D.
或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度
(毫米)滿足關(guān)系:
.設(shè)
為隔熱層建造費(fèi)用與
年的能源消耗費(fèi)用之和.
(1)請(qǐng)解釋的實(shí)際意義,并求
的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.16
B.﹣16
C.﹣16a2﹣2a﹣16
D.16a2+2a﹣16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(1)求張同學(xué)至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對(duì)甲類題的概率都是 ,答對(duì)每道乙類題的概率都是
,且各題答對(duì)與否相互獨(dú)立.用X表示張同學(xué)答對(duì)題的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求過點(diǎn)
處的切線方程
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com