日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓)的左、右焦點(diǎn)分別為、,設(shè)點(diǎn),在中, ,周長(zhǎng)為.

          1)求橢圓的方程;

          2)設(shè)不經(jīng)過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),若直線的斜率之和為,求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

          3)記第(2)問(wèn)所求的定點(diǎn)為,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),試根據(jù)面積的不同取值范圍,討論存在的個(gè)數(shù),并說(shuō)明理由.

          【答案】(1);(2)過(guò)定點(diǎn);(3)見(jiàn)解析.

          【解析】試題分析:(1)由題意布列關(guān)于的方程組,從而得到橢圓方程;(2) 設(shè)直線方程: ,聯(lián)立方程可得: ,利用根與系數(shù)的關(guān)系及,得到過(guò)定點(diǎn).3設(shè)直線與橢圓相切, ,兩切線到的距離分別為,根據(jù)面積的不同取值范圍,討論存在的個(gè)數(shù).

          試題解析:

          1得: ,所以………

          周長(zhǎng)為所以………

          ①②方程組,得

          所以橢圓方程為

          2設(shè)直線方程: ,交點(diǎn)

          依題: 即:

          過(guò)定點(diǎn).

          3,

          設(shè)直線與橢圓相切,

          得兩切線到的距離分別為

          當(dāng)時(shí), 個(gè)數(shù)為0個(gè)

          當(dāng)時(shí), 個(gè)數(shù)為1個(gè)

          當(dāng)時(shí), 個(gè)數(shù)為2個(gè)

          當(dāng)時(shí), 個(gè)數(shù)為3個(gè)

          當(dāng)時(shí), 個(gè)數(shù)為4個(gè)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分13分)已知?jiǎng)訄A過(guò)定點(diǎn)且與軸截得的弦的長(zhǎng)為

          )求動(dòng)圓圓心的軌跡的方程;

          )已知點(diǎn),動(dòng)直線和坐標(biāo)軸不垂直,且與軌跡相交于兩點(diǎn),試問(wèn):在軸上是否存在一定點(diǎn),使直線過(guò)點(diǎn),且使得直線,,的斜率依次成等差數(shù)列?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩家外賣(mài)公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:

          甲公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          10

          15

          10

          10

          5

          乙公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          5

          10

          10

          20

          5

          1)現(xiàn)從甲公司記錄的50天中隨機(jī)抽取3天,求這3天送餐單數(shù)都不小于40的概率;

          2)若將頻率視為概率,回答下列兩個(gè)問(wèn)題:

          ①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

          ②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說(shuō)明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是邊長(zhǎng)為的正方形,平面,與平面所成角為

          Ⅰ)求證:平面

          Ⅱ)求二面角的余弦值.

          Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-5:不等式選講

          已知函數(shù)

          (Ⅰ)求不等式的解集;

          (Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù),求

          最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語(yǔ)類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個(gè)數(shù)字被污損.

          (I)求東部觀眾平均人數(shù)超過(guò)西部觀眾平均人數(shù)的概率.

          (II)節(jié)目的播出極大激發(fā)了觀眾隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語(yǔ)知識(shí)的的時(shí)間y (單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如下表所示)

          由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測(cè)年齡為60歲觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)的時(shí)間.

          參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語(yǔ)類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個(gè)數(shù)字被污損.

          (I)求東部觀眾平均人數(shù)超過(guò)西部觀眾平均人數(shù)的概率.

          (II)節(jié)目的播出極大激發(fā)了觀眾隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語(yǔ)知識(shí)的的時(shí)間y (單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如下表所示)

          由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測(cè)年齡為60歲觀眾周均學(xué)習(xí)成語(yǔ)知識(shí)的時(shí)間.

          參考數(shù)據(jù):線性回歸方程中的最小二乘估計(jì)分別是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

          1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

          2)已知點(diǎn)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          處取極值在點(diǎn)處的切線方程;

          )當(dāng)時(shí)有唯一的零點(diǎn),求證

          查看答案和解析>>

          同步練習(xí)冊(cè)答案