日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)(n,an)(n∈N*)在函數(shù)f(x)=-2x-2的圖象上,數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn是6Sn與8n的等差中項(xiàng).
          (1)求數(shù)列{bn}的通項(xiàng)公式;
          (2)設(shè)cn=bn+8n+3,數(shù)列{dn}滿足d1=c1(n∈N*).求數(shù)列{dn}的前n項(xiàng)和Dn;
          (3)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1,x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),a≠0),試判斷數(shù)列是否為等差數(shù)列,并說明理由.
          【答案】分析:(1)本題考查求數(shù)列的通項(xiàng)公式,用數(shù)列的前n項(xiàng)和求是列的通項(xiàng)公式,注意對(duì)于第一項(xiàng)的驗(yàn)證,又根據(jù)等比中項(xiàng)解決問題,這一道題目比較困難,第一問考查的內(nèi)容較多.
          (2)構(gòu)造新數(shù)列,構(gòu)造數(shù)列時(shí)按照一般的方式來整理,整理后發(fā)現(xiàn)結(jié)果比較簡(jiǎn)單,利用等比數(shù)列的前n項(xiàng)和公式求數(shù)列的和.
          (3)本題證明數(shù)列是一個(gè)等差數(shù)列,應(yīng)用等差數(shù)列的定義來證明,只要數(shù)列的連續(xù)兩項(xiàng)之差是一個(gè)常數(shù),問題得證,證明是一個(gè)常數(shù)的過程是一個(gè)數(shù)列和函數(shù)綜合的過程,用到所給的函數(shù)的性質(zhì).
          解答:解:(Ⅰ)依題意得an=-2n-2,故a1=-4.
          又2Tn=6Sn+8n,即Tn=3Sn+4n,
          ∴當(dāng)n≥2時(shí),bn=Tn-Tn-1=3(Sn-Sn-1)+4=3an+4=-6n-2.
          又b1=T1=3S1+4=3a1+4=-8,也適合上式,
          ∴bn=-6n-2(n∈N*).
          (Ⅱ)∵cn=bn+8n+3=-6n-2+8n+3=2n+1(n∈N*),
          =2dn+1,
          因此dn+1+1=2(dn+1)(n∈N*).
          由于d1=c1=3,
          ∴{dn+1}是首項(xiàng)為d1+1=4,公比為2的等比數(shù)列.
          故dn+1=4×2n-1=2n+1,
          ∴dn=2n+1-1.
          Dn=(22+23++2n+1)-n=
          (Ⅲ)
          ==+=
          =
          因?yàn)橐阎猘為常數(shù),則數(shù)列是等差數(shù)列.
          點(diǎn)評(píng):本題是一道綜合題,數(shù)列的遞推關(guān)系式往往比通項(xiàng)公式還重要,我們要重視數(shù)列的遞推關(guān)系式,依據(jù)遞推關(guān)系式的特點(diǎn),選擇恰當(dāng)?shù)姆椒,達(dá)到解決問題的目的.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)(n,an)(n∈N*)在函數(shù)f(x)=-6x-2的圖象上,數(shù)列{an}的前n項(xiàng)和為Sn
          (Ⅰ)求Sn;
          (Ⅱ)設(shè)cn=an+8n+3,數(shù)列{dn}滿足d1=c1,dn+1=cdn(n∈N*).求數(shù)列{dn}的通項(xiàng)公式;
          (Ⅲ)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1、x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),且a≠0),記bn=
          g(
          dn+1
          2
          )
          dn+1
          ,試判斷數(shù)列{bn}是否為等差數(shù)列,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          1、已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)(n,an)(n∈N*)在函數(shù)f(x)=-2x-2的圖象上,數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn是6Sn與8n的等差中項(xiàng).
          (1)求數(shù)列{bn}的通項(xiàng)公式;
          (2)設(shè)cn=bn+8n+3,數(shù)列{dn}滿足d1=c1,dn+1=cdn(n∈N*).求數(shù)列{dn}的前n項(xiàng)和Dn;
          (3)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1,x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),a≠0),試判斷數(shù)列{
          g(
          dn+1
          2
          )
          dn+1
          }
          是否為等差數(shù)列,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn) (n,an)在直線y=2x上,則數(shù)列{an}( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          直線l1過(1,0)點(diǎn),且l1關(guān)于直線y=x對(duì)稱直線為l2,已知點(diǎn)A(n,
          an+1an
          )
          (n∈N+)在l2上,a1=1,當(dāng)n≥2時(shí),an+1an-1=anan-1+an2
          (Ⅰ)求l2的方程;
          (Ⅱ)求{an}的通項(xiàng)公式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案