如圖1,在直角梯形中,
,
,
,
. 把
沿對(duì)角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(1)求證:平面平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請(qǐng)說明理由.
(1)證明過程詳見解析;(2)正弦值為;(3)存在,點(diǎn)E即為所求.
【解析】
試題分析:本題以三棱錐為幾何背景考查面面平行和二面角的求法,可以運(yùn)用傳統(tǒng)幾何法,也可以用空間向量法求解,突出考查空間想象能力和計(jì)算能力.第一問,首先由點(diǎn)的正投影
在
上得
平面
,利用線面垂直的性質(zhì),得
,在原直角梯形中,利用已知的邊和角,得到
,
,所以得到
為等邊三角形,從而知
是
的中點(diǎn),所以可得
,
,
利用面面平行的判定得出證明;第二問,先建立空間直角坐標(biāo)系,寫出所需點(diǎn)的坐標(biāo),先設(shè)出平面的法向量
,利用
求出
,利用夾角公式求直線
和法向量
所在直線的夾角;第三問,由已知和前2問過程中得到的數(shù)據(jù),可以看出
,所以
點(diǎn)即為所求.
試題解析:(I)因?yàn)辄c(diǎn)在平面
上的正投影
恰好落在線段
上,
所以平面
,所以
,
1分
因?yàn)樵谥苯翘菪?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031904340786423302/SYS201403190436151923663596_DA.files/image024.png">中,,
,
,
,
所以,
,所以
是等邊三角形,
所以是
中點(diǎn),
2分
所以,
3分
同理可證,
又,
所以平面平面
.
5分
(II)在平面內(nèi)過
作
的垂線 如圖建立空間直角坐標(biāo)系,則
,
,
,
6分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031904340786423302/SYS201403190436151923663596_DA.files/image040.png">,,
設(shè)平面的法向量為
,
因?yàn)?img
src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031904340786423302/SYS201403190436151923663596_DA.files/image045.png">,,
所以有,即
,
令則
所以
,
8分
,
10分
所以直線與平面
所成角的正弦值為
.
11分
(III)存在,事實(shí)上記點(diǎn)為
即可
12分
因?yàn)樵谥苯侨切?img
src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031904340786423302/SYS201403190436151923663596_DA.files/image055.png">中,, 13分
在直角三角形中,點(diǎn)
,
所以點(diǎn)到四個(gè)點(diǎn)
的距離相等.
14分
考點(diǎn):1.線面垂直的判定;2.中位線的性質(zhì);3.面面平行的判定;4.線面角的求法;5.夾角公式;6.向量法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市海淀區(qū)高三5月期末練習(xí)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在直角梯形中,
,
,
,
. 把
沿對(duì)角線
折起到
的位置,如圖2所示,使得點(diǎn)
在平面
上的正投影
恰好落在線段
上,連接
,點(diǎn)
分別為線段
的中點(diǎn).
(I)求證:平面平面
;
(II)求直線與平面
所成角的正弦值;
(III)在棱上是否存在一點(diǎn)
,使得
到點(diǎn)
四點(diǎn)的距離相等?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三4月模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,
在直角梯形中,
,
,
,
為線段
的中點(diǎn). 將
沿
折起,使平面
平面
,得到幾何體
,如圖2所示.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省汕頭市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在直角梯形中,
,
,且
.
現(xiàn)以為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,
為
的中點(diǎn),如圖2.
(1)求證:∥平面
;
(2)求證:平面
;
(3)求點(diǎn)到平面
的距離.
圖 圖
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年天津市天津一中高三下學(xué)期第五次月考數(shù)學(xué)(理) 題型:解答題
如圖1,在直角梯形中,
,
把△沿對(duì)角線
折起后如圖2所示(點(diǎn)
記為點(diǎn)
), 點(diǎn)
在平面
上的正投影
落在線段
上, 連接
.
(1) 求直線與平面
所成的角的大小;
(2) 求二面角的大小的余弦值.
圖1 圖2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com