【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個(gè)周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線(xiàn)y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點(diǎn)的坐標(biāo)為 .
【答案】f(x)=2sin( x+
);(
+4kπ,
)或(
+4kπ,
)(k∈Z)
【解析】解:∵f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R),
∴A=2,周期T= =
﹣(﹣
)=4π,
∴ω= .
∴f(x)=2sin( x+φ),
又f(﹣ )=2sin(
×(﹣
)+φ)=0,
∴φ﹣ =kπ,k∈Z,|φ|<π,
∴φ= .
∴f(x)=2sin( x+
).
當(dāng)f(x)= 時(shí),即2sin(
x+
)=
,可得sin(
x+
)=
,
∴ x+
=
+2kπ或
x+
=
+2kπ(k∈Z),可得x=
+4kπ或
+4kπ(k∈Z)
由此可得,直線(xiàn)y= 與函數(shù)f(x)圖象的所有交點(diǎn)的坐標(biāo)為:(
+4kπ,
)或(
+4kπ,
)(k∈Z).
所以答案是:f(x)=2sin( x+
),(
+4kπ,
)或(
+4kπ,
)(k∈Z).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問(wèn)粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求過(guò)兩點(diǎn)A(1,4)、B(3,2),且圓心在直線(xiàn)y=0上的圓的標(biāo)準(zhǔn)方程.并判斷點(diǎn)M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)的邊分別為a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面積S△ABC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)
的極值;
(2)若,
,
,使得
(
),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),直線(xiàn)
的方程為
.
(1)若直線(xiàn)是曲線(xiàn)
的切線(xiàn),求證:
對(duì)任意
成立;
(2)若對(duì)任意
恒成立,求實(shí)數(shù)是
應(yīng)滿(mǎn)足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長(zhǎng)為
的正方形,側(cè)棱
底面
,且側(cè)棱
的長(zhǎng)是
,點(diǎn)
分別是
的中點(diǎn).
(Ⅰ)證明: 平面
;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
,
,側(cè)面
底面
.
(1)求證:平面平面
;
(2)若與底面
所成角為
,求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com