日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將函數(shù)f(x)=cos2x﹣sin2x的圖象向左平移 個單位后得到函數(shù)F(x)的圖象,則下列說法正確的是(
          A.函數(shù)F(x)是奇函數(shù),最小值是
          B.函數(shù)F(x)是偶函數(shù),最小值是
          C.函數(shù)F(x)是奇函數(shù),最小值是﹣2
          D.函數(shù)F(x)是偶函數(shù),最小值是﹣2

          【答案】A
          【解析】解:將函數(shù)f(x)=cos2x﹣sin2x= cos(2x+ )的圖象向左平移 個單位后得到函數(shù)F(x)= cos[2(x+ )+ ]= cos(2x+ )=﹣ sin2x的圖象, 故函數(shù)F(x)是奇函數(shù),且它的最小值為﹣ ,
          故選:A.
          【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著社會的發(fā)展,食品安全問題漸漸成為社會關(guān)注的熱點,為了提高學(xué)生的食品安全意識,某學(xué)校組織全校學(xué)生參加食品安全知識競賽,成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),若該校的學(xué)生總?cè)藬?shù)為3000,則成績不超過60分的學(xué)生人數(shù)大約為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個頂點坐標(biāo)為A(7,8)B(10,4)C(2,-4)

          (1)求BC邊上的中線所在直線的方程;

          (2)求BC邊上的高所在直線的方程.

          【答案】(1);(2)

          【解析】試題分析:(1)根據(jù)中點坐標(biāo)公式求出中點的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點斜式可求邊上的高所在直線的方程.

          試題解析:1)由B(10,4),C(2,-4)BC中點D的坐標(biāo)為(6,0),

          所以AD的斜率為k8,

          所以BC邊上的中線AD所在直線的方程為y08(x6)

          8xy480

          2)由B(10,4),C(2,-4),BC所在直線的斜率為k1,

          所以BC邊上的高所在直線的斜率為-1,

          所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

          型】解答
          結(jié)束】
          17

          【題目】已知直線lx2y2m20

          (1)求過點(2,3)且與直線l垂直的直線的方程;

          (2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列 的前 項和為 ,且滿足 ,求數(shù)列 的通項公式.勤于思考的小紅設(shè)計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
          思路1:先設(shè) 的值為1,根據(jù)已知條件,計算出 ,
          猜想: .
          然后用數(shù)學(xué)歸納法證明.證明過程如下:
          ①當(dāng) 時, , 猜想成立
          ②假設(shè) N*)時,猜想成立,即
          那么,當(dāng) 時,由已知 ,得
          ,兩式相減并化簡,得 (用含 的代數(shù)式表示).
          所以,當(dāng) 時,猜想也成立.
          根據(jù)①和②,可知猜想對任何 N*都成立.
          思路2:先設(shè) 的值為1,根據(jù)已知條件,計算出
          由已知 ,寫出 的關(guān)系式: ,
          兩式相減,得 的遞推關(guān)系式:
          整理:
          發(fā)現(xiàn):數(shù)列 是首項為 , 公比為的等比數(shù)列.
          得出:數(shù)列 的通項公式 , 進而得到

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的一系列對應(yīng)值如下表:

          (1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個解析式;

          (2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時,方程恰有兩個不同的解,求實數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市對大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補貼,貸款期限分為6個月、12個月、18個月、24個月、36個月五種,對于這五種期限的貸款政府分別補貼200元、300元、300元、400元、400元,從2016年享受此項政策的自主創(chuàng)業(yè)人員中抽取了100人進行調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如表:

          貸款期限

          6個月

          12個月

          18個月

          24個月

          36個月

          頻數(shù)

          20

          40

          20

          10

          10

          以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
          (Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報此項貸款,計算其中恰有兩人選擇貸款期限為12個月的概率;
          (Ⅱ)設(shè)給某享受此項政策的自主創(chuàng)業(yè)人員補貼為X元,寫出X的分布列;該市政府要做預(yù)算,若預(yù)計2017年全市有600人申報此項貸款,則估計2017年該市共要補貼多少萬元.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2017118日開始,支付寶用戶可以通過掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?(愛國福、富強福、和諧福、友善福,敬業(yè)福),除夕夜,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某髙校一個社團在年后開學(xué)后隨機調(diào)査了80位該校在讀大學(xué)生,就除夕夜之前是否集齊五福進行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

          1計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

          2為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五福活動,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】命題p:x∈(﹣∞,0),2x>3x;命題q:x∈(0,+∞), >x3; 則下列命題中真命題是(
          A.p∧q
          B.(¬p)∧q
          C.(¬p)∨(¬q)
          D.p∧(¬q)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是( )
          A.偶函數(shù)且它的圖象關(guān)于點 (π,0)對稱
          B.奇函數(shù)且它的圖象關(guān)于點 (π,0)對稱
          C.奇函數(shù)且它的圖象關(guān)于點( . ,0)對稱
          D.偶函數(shù)且它的圖象關(guān)于點( ,0)對稱

          查看答案和解析>>

          同步練習(xí)冊答案