【題目】設(shè),
.
(1)令,求
的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明
.
【答案】(1)當(dāng)時(shí),函數(shù)
單調(diào)遞增區(qū)間為
;當(dāng)
時(shí),函數(shù)
單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(2)證明見(jiàn)解析.
【解析】試題分析:(1)求出的導(dǎo)數(shù),
,分
討論,分別由
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(2)只要證明
即可,由(1)知,
,證明
在
即可.
試題解析:(1)由,
.
可得.
當(dāng)時(shí),
時(shí),
,函數(shù)
單調(diào)遞增;
當(dāng)時(shí),
時(shí),
,函數(shù)
單調(diào)遞增;
時(shí),
,函數(shù)
單調(diào)遞減;
所以,當(dāng)時(shí),函數(shù)
單調(diào)遞增區(qū)間為
;當(dāng)
時(shí),函數(shù)
單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
(2)只要證明對(duì)任意,
.
由(1)知,在
取得最大值,
且.
令,
,
則在
上單調(diào)遞增,
.
所以當(dāng)時(shí),
即
.
【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值、利用導(dǎo)數(shù)證明不等式,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)
的定義域;②對(duì)
求導(dǎo);③令
,解不等式得
的范圍就是遞增區(qū)間;令
,解不等式得
的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)
的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大小).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓
的直徑,點(diǎn)
在圓
上,且
,矩形
所在的平面和圓
所在的平面垂直,且
.
(1)求證:平面平面
;
(2)在線段上是否存在了點(diǎn)
,使得
平面
?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(8,m)和(9,3).
(Ⅰ)求m的值;
(Ⅱ)若函數(shù)g(x)=logaf(x)(a>0,a≠1)在區(qū)間[16,36]上的最大值比最小值大1,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin2x+2 sinxsin(x+
)(ω>0).
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直平行六面體中,
為棱
上任意一點(diǎn),
為底面
(除
外)上一點(diǎn),已知
在底面
上的射影為
,若再增加一個(gè)條件,就能得到
,現(xiàn)給出以下條件:
①;②
在
上;③
平面
;④直線
和
在平面
的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認(rèn)為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC是邊長(zhǎng)為1的正三角形,點(diǎn)P1 , P2 , P3四等分線段BC(如圖所示).
(1)求
+
的值;
(2)Q為線段AP1上一點(diǎn),若 =m
+
,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,則b﹣a的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在店慶一周年開(kāi)展“購(gòu)物折上折活動(dòng)”:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿500元再減100元.如某商品標(biāo)價(jià)為1500元,則購(gòu)買(mǎi)該商品的實(shí)際付款額為1500×0.8-200=1000(元).設(shè)購(gòu)買(mǎi)某商品得到的實(shí)際折扣率.設(shè)某商品標(biāo)價(jià)為
元,購(gòu)買(mǎi)該商品得到的實(shí)際折扣率為
.
(Ⅰ)寫(xiě)出當(dāng)時(shí),
關(guān)于
的函數(shù)解析式,并求出購(gòu)買(mǎi)標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(Ⅱ)對(duì)于標(biāo)價(jià)在[2500,3500]的商品,顧客購(gòu)買(mǎi)標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)A、B、C三種家電,經(jīng)市場(chǎng)調(diào)查決定調(diào)整生產(chǎn)方案,計(jì)劃本季度(按不超過(guò)480個(gè)工時(shí)計(jì)算)生產(chǎn)A、B、C三種家電共120臺(tái),其中A家電至少生產(chǎn)20臺(tái),已知生產(chǎn)A、B、C三種家電每臺(tái)所需的工時(shí)分別為3、4、6個(gè)工時(shí),每臺(tái)的產(chǎn)值分別為20、30、40千元,則按此方案生產(chǎn),此季度最高產(chǎn)值為( 。┣г
A. 3600 B. 350 C. 4800 D. 480
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com