日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在時恒成立,求實數(shù)k的取值范圍.
          【答案】分析:(1)由二次函數(shù)g(x)=ax2-2ax+1+b的對稱軸為x=1,由題意得,或 ,解得a、b的值,即可得到函數(shù)f(x)的解析式.
          (2)不等式即 ,在時,設(shè),則k≤(t-1)2
          根據(jù)(t-1)2min>0,求得實數(shù)k的取值范圍.
          解答:解:(1)由于二次函數(shù)g(x)=ax2-2ax+1+b的對稱軸為x=1,
          由題意得:1°,解得
          或  2°,解得.(舍去) 
          ∴a=1,b=0…(6分)
          故g(x)=x2-2x+1,. …(7分)
          (2)不等式f(2x)-k•2x≥0,即,∴.…(10分)
          時,設(shè),∴k≤(t-1)2,
          由題意可得,函數(shù)f(x)的定義域為{x|x≠0},故t≠1,即 ≤t≤2,且t≠1.
          ∵(t-1)2min>0,∴k≤0,即實數(shù)k的取值范圍為(-∞,0].…(14分)
          點評:本題主要考查求二次函數(shù)在閉區(qū)間上的最值,用待定系數(shù)法求函數(shù)的解析式,函數(shù)的恒成立問題,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)二模)已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間
          2,3
          上有最大值4,最小值1,設(shè)函數(shù)f(x)=
          g(x)
          x

          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在x∈
          -1,1
          時恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)二模)已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
          g(x)
          x

          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數(shù)k的取值范圍;
          (3)如果關(guān)于x的方程f(|2x-1|)+t•(
          4
          |2x-1|
          -3)=0有三個相異的實數(shù)根,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州市奔牛高級中學(xué)高三(上)第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數(shù)k的取值范圍;
          (3)如果關(guān)于x的方程f(|2x-1|)+t•(-3)=0有三個相異的實數(shù)根,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港市梁豐高級中學(xué)高三(上)周日數(shù)學(xué)試卷(5)(解析版) 題型:解答題

          已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數(shù)k的取值范圍;
          (3)如果關(guān)于x的方程f(|2x-1|)+t•(-3)=0有三個相異的實數(shù)根,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年上海市虹口區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
          (1)求a、b的值及函數(shù)f(x)的解析式;
          (2)若不等式f(2x)-k•2x≥0在時恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案