【題目】已知橢圓的左右焦點(diǎn)與其短軸得一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,直線(xiàn)
與橢圓交于
兩點(diǎn),與
軸,
軸分別相交于點(diǎn)
合點(diǎn)
,且
,點(diǎn)
時(shí)點(diǎn)
關(guān)于
軸的對(duì)稱(chēng)點(diǎn),
的延長(zhǎng)線(xiàn)交橢圓于點(diǎn)
,過(guò)點(diǎn)
分別做
軸的垂線(xiàn),垂足分別為
.
(1) 求橢圓的方程;
(2)是否存在直線(xiàn),使得點(diǎn)
平分線(xiàn)段
?若存在,請(qǐng)求出直線(xiàn)
的方程;若不存在,請(qǐng)說(shuō)明理由。
【答案】(1);(2)存在直線(xiàn)
的方程為
或
.
【解析】試題分析: (1)由正三角形的高與邊長(zhǎng)的關(guān)系可求出,再由點(diǎn)
在橢圓上,可求出
的值,從而求出橢圓方程; (2)假設(shè)存在,由直線(xiàn)方程可求出
點(diǎn)的坐標(biāo),由已知條件可求出
點(diǎn)的坐標(biāo),設(shè)
聯(lián)立直線(xiàn)與橢圓的方程,消去
,得到關(guān)于
的一元二次方程,由韋達(dá)定理可求出
的表達(dá)式以及直線(xiàn)
的斜率,聯(lián)立直線(xiàn)
與橢圓方程,可求出
的表達(dá)式,進(jìn)而求出
的表達(dá)式, 由
平分線(xiàn)段
,求出
的值,得出直線(xiàn)方程.
試題解析:(1)由題意知,即
,
,即
,
∵在橢圓上,∴
,
所以橢圓方程為
.
(2)存在
設(shè),∵
∴,
∴
①
∴,
聯(lián)立 ∴
②
∴
∴
∴
若平分線(xiàn)段
,則
即,
, ∴
∵ 把①,②代入,得
所以直線(xiàn)的方程為
或
點(diǎn)睛:本題主要考查了橢圓的方程以及直線(xiàn)與橢圓的位置關(guān)系,屬于中檔題.第一問(wèn)求橢圓方程很容易,大部分學(xué)生能做對(duì); 在第二問(wèn)中,假設(shè)存在, 當(dāng)點(diǎn)平分線(xiàn)段
,
點(diǎn)為
的中點(diǎn),利用中點(diǎn)坐標(biāo)公式,求出
的值,得出直線(xiàn)方程.注意本題涉及的點(diǎn)線(xiàn)位置關(guān)系比較復(fù)雜,容易弄錯(cuò).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,
,
,
,平面
平面
,四邊形
是矩形,
,點(diǎn)
在線(xiàn)段
上,且
.
(1)求證: 平面
;
(2)求直線(xiàn)與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用隨機(jī)模擬的方法估算邊長(zhǎng)是2的正方形內(nèi)切圓的面積(如圖所示),并估計(jì)π的近似值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),證明:對(duì)任意的
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人比例;
(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,能否提供更好的調(diào)查方法來(lái)估計(jì)該地區(qū)老年人中需要志愿幫助?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若和
在
有相同的單調(diào)區(qū)間,求
的取值范圍;
(Ⅱ)令(
),若
在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>
,對(duì)任意
都有
,且當(dāng)
時(shí),
.
(1)試判斷的單調(diào)性,并證明;
(2)若,
①求的值;
②求實(shí)數(shù)的取值范圍,使得方程
有負(fù)實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間
上有最大值4 和最小值1,設(shè)
.
(1)求的值;
(2)若不等式在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍;
(3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)
的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)
在點(diǎn)
處的切線(xiàn)方程為
:
,當(dāng)
時(shí),若
在
內(nèi)恒成立,則稱(chēng)
為函數(shù)
的“轉(zhuǎn)點(diǎn)”.當(dāng)
時(shí),試問(wèn)函數(shù)
是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出轉(zhuǎn)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com