日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求極坐標(biāo)方程ρcosθ=2sin2θ表示的曲線.

          一條直線和一個圓

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,以為極點,軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為: (為參數(shù)),兩曲線相交于兩點. 求:(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
          (2)若求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線的參數(shù)方程為為參數(shù)),曲線在點處的切線為.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分) 直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為,直線方程為(t為參數(shù)),直線與C的公共點為T. 
          (1)求點T的極坐標(biāo);
          (2)過點T作直線,被曲線C截得的線段長為2,求直線的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直線C1(t為參數(shù)),C2(θ為參數(shù)).
          (1)當(dāng)α=時,求C1與C2的交點坐標(biāo);
          (2)過坐標(biāo)原點O作C1的垂線,垂足為A,P為OA中點,當(dāng)α變化時,求P點的軌跡的參數(shù)方程,并指出它是什么曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
          (1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
          (2)已知點、的極坐標(biāo)分別是,直線與曲線相交于、兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為為參數(shù)),點Q的極坐標(biāo)為。
          (1)化圓C的參數(shù)方程為極坐標(biāo)方程;
          (2)直線過點Q且與圓C交于M,N兩點,求當(dāng)弦MN的長度為最小時,直線的直角坐標(biāo)方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),若直線與圓相切,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos,它們相交于A、B兩點,求線段AB的長.

          查看答案和解析>>

          同步練習(xí)冊答案