日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 各項(xiàng)均為正數(shù)的數(shù)列{an},a1=,且對滿足m+n=p+q的任意正整數(shù)m,n,p,q都有
          (I)求通項(xiàng)an;
          (II)記cn=an+1-an(n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有Tn
          【答案】分析:(I)解法一:特征根法,構(gòu)造得出,利用{}為等比數(shù)列求解
          解法二:由1+n=2+(n-1),得出,繼而轉(zhuǎn)化為=,利用數(shù)列{}為等比數(shù)列求解
          (II)=,經(jīng)放縮后,利用等比數(shù)列求和公式化簡后可證明.
          解答:解:(I)解法一:特征根法,令得α=1


          再利用構(gòu)造新數(shù)列求通項(xiàng)公式
          設(shè)

          又   



          解法二:由

          將a1=,代入化簡得
          an=
          所以=
          故數(shù)列{}為等比數(shù)列,從而=,an=

          (II)∵

          =

          點(diǎn)評:本題考查數(shù)列的遞推公式與通項(xiàng)公式,轉(zhuǎn)化構(gòu)造的思想方法以及放縮法證明不等式.綜合性較強(qiáng).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)單調(diào)遞增函數(shù)f(x)的定義域?yàn)椋?,+∞),且對任意的正實(shí)數(shù)x,y有f(xy)=f(x)+f(y),且f(
          1
          2
          )=-1

          (1)一個各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:f(sn)=f(an)+f(an+1)-1其中Sn為數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;
          (2)在(1)的條件下,是否存在正數(shù)M使下列不等式:2n•a1a2…an≥M
          2n+1
          (2a1-1)(2a2-1)…(2an-1)
          對一切n∈N*成立?若存在,求出M的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對任意n∈N,有2Sn=2p
          a
          2
          n
          +pan-p(p∈R).
          (1)求常數(shù)p的值;
          (2)求數(shù)列{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn,an,
          1
          2
          成等差數(shù)列,
          (1)求a1,a2的值;
          (2)求數(shù)列{an}的通項(xiàng)公式;
          (3)若bn=4-2n(n∈N*),設(shè)cn=
          bn
          an
          ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且點(diǎn)(an,Sn)在函數(shù)y=
          1
          2
          x2+
          1
          2
          x-3
          的圖象上,
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)記bn=nan(n∈N*),求證:
          1
          b1
          +
          1
          b2
          +…+
          1
          bn
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•長寧區(qū)二模)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和sn滿足s1>1,且6sn=(an+1)(an+2)(n為正整數(shù)).
          (1)求{an}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{bn}滿足bn=
          an,n為偶數(shù)
          2an,n為奇數(shù)
          ,求Tn=b1+b2+…+bn;
          (3)設(shè)Cn=
          bn+1
          bn
          ,(n為正整數(shù))
          ,問是否存在正整數(shù)N,使得n>N時恒有Cn>2008成立?若存在,請求出所有N的范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案