日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)MPC的中點(diǎn).

          (1)求證:PA∥平面BMD;

          (2)求證:ADPB

          (3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.

          【答案】(1)詳見解析;(2)詳見解析;(3).

          【解析】

          (1)設(shè)ACBD交于點(diǎn)O,MO為三角形PAC的中位線可得MOPA,再利用直線和平面平行的判定定理,證得結(jié)論.

          (2)由PD⊥平面ABCD,可得PDAD,再由cos∠BAD,證得 ADBD,可證AD⊥平面PBD,從而證得結(jié)論.

          (3)點(diǎn)A到平面BMD的距離等于點(diǎn)C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點(diǎn)C到平面MBD的距離h

          (1)證明:設(shè)ACBD交于點(diǎn)O,則由底面ABCD是平行四邊形可得OAC的中點(diǎn).

          由于點(diǎn)MPC的中點(diǎn),故MO為三角形PAC的中位線,故MOPA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),

          故有PA∥平面BMD

          (2)由PD⊥平面ABCD,可得PDAD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,

          ∴cos∠BADcos60°,∴ADBD

          這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴ADPB

          (3)若ABPD=2,則AD=1,BDABsin∠BAD=2,

          由于平面BMD經(jīng)過AC的中點(diǎn),故點(diǎn)A到平面BMD的距離等于點(diǎn)C到平面BMD的距離.

          CD得中點(diǎn)N,則MN⊥平面ABCD,且MNPD=1.

          設(shè)點(diǎn)C到平面MBD的距離為h,則h為所求.

          ADPB 可得BCPB,故三角形PBC為直角三角形.

          由于點(diǎn)MPC的中點(diǎn),利用直角三角形斜邊的中線等于斜邊的一半,可得MDMB,故三角形MBD為等腰三角形,

          MOBD

          由于PA,∴MO

          VMBCDVCMBD 可得,MNBD×MO )×h

          故有 )×1h,

          解得h

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
          在直線坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
          (1)說明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;
          (2)直線C3的極坐標(biāo)方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點(diǎn)都在C3上,求a.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
          (1)求直方圖中的a值;
          (2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù).說明理由;
          (3)估計(jì)居民月均用水量的中位數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)fx)=ax2+x

          (Ⅰ)當(dāng)a>0時,求證:對任意的x1,x2R都有[fx1)+fx2)]成立;

          (Ⅱ)當(dāng)x∈[0,2]時,|fx)|≤1恒成立,求實(shí)數(shù)a的取值范圍;

          (Ⅲ)若a=,點(diǎn)pm,n2)(mZnZ)是函數(shù)y=fx)圖象上的點(diǎn),求m,n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)y=f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( 。
          A.y=sinx
          B.y=lnx
          C.y=ex
          D.y=x3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓M的方程為x 2+y-22=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA,PB,切點(diǎn)為A,B

          1APB=60°,試求點(diǎn)P的坐標(biāo);

          2若P點(diǎn)的坐標(biāo)為2,1,過P作直線與圓M交于C,D兩點(diǎn),當(dāng)時,求直線CD的方程;

          3求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點(diǎn)F是C的一個頂點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)P是E上的動點(diǎn),且位于第一象限,E在點(diǎn)P處的切線l與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
          ①求證:點(diǎn)M在定直線上;
          ②直線l與y軸交于點(diǎn)G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將邊長為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,AC長為 π,A1B1長為 ,其中B1與C在平面AA1O1O的同側(cè).

          (1)求三棱錐C﹣O1A1B1的體積;
          (2)求異面直線B1C與AA1所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=4x , 則f(﹣ )+f(1)= 

          查看答案和解析>>

          同步練習(xí)冊答案