日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(c,0)三點,其中c>0.
          (1)求⊙M的標準方程(用含c的式子表示);
          (2)已知橢圓+=1(a>b>0)(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè),求橢圓離心率的取值范圍.
          【答案】分析:(1)可用待定系數(shù)法,設(shè)圓的一般方程為x2+y2+Dx+Ey+F=0,將已知三點坐標代入解方程組即可,最后再轉(zhuǎn)化為標準方程;(2)分別求出A、C、B、D的坐標,由已知A點在B點右側(cè),C點在D點右側(cè),得關(guān)于a、b、c的不等式,即可解得橢圓離心率的取值范圍
          解答:解:(1)設(shè)⊙M的方程為x2+y2+Dx+Ey+F=0,
          則由題設(shè)得解得
          ∴⊙M的方程為x2+y2-cx-c2=0,
          其標準方程為(x-c)2+y2=c2
          (2)⊙M與x軸的兩個交點為A(c,0),C(-c,0),又B(b,0),D(-b,0),
          由題設(shè)
          所以c2<b2<3c2,c2<a2-c2<3c2
          解得,即<e<
          ∴橢圓離心率的取值范圍為().
          點評:本題主要考查了圓的標準方程及其求法,橢圓的幾何性質(zhì),橢圓離心率的求法,待定系數(shù)法的使用和關(guān)于a、b、c的不等式的建立是解決本題的關(guān)鍵
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
          2
          的圓C經(jīng)過坐標原點O,橢圓
          x2
          a2
          +
          y2
          9
          =1(a>0)
          與圓C的一個交點到橢圓兩焦點的距離之和為10.
          (1)求圓C的方程;
          (2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
          3
          5
          ,點B的縱坐標是
          12
          13
          ,則sin(α+β)的值是
          16
          65
          16
          65

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在平面直角坐標系xOy中,若焦點在x軸的橢圓
          x2
          m
          +
          y2
          3
          =1
          的離心率為
          1
          2
          ,則m的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•泰州三模)選修4-4:坐標系與參數(shù)方程
          在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
          3t
          ,0)
          ,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點為F1(-1,0),且橢圓C的離心率e=
          1
          2

          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
          (3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
          16
          7
          相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案