日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•廣州一模)兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進(jìn)行分類,如圖中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,則a5=
          35
          35
          ,若an=145,則n=
          10
          10

          分析:仔細(xì)觀察法各個圖形中實心點的個數(shù),找到個數(shù)之間的通項公式,再求第5個五角星的中實心點的個數(shù)及an=145時,n的值即可.
          解答:解:第一個有1個實心點,
          第二個有1+1×3+1=5個實心點,
          第三個有1+1×3+1+2×3+1=12個實心點,
          第四個有1+1×3+1+2×3+1+3×3+1=22個實心點,

          第n個有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=
          3n(n-1)
          2
          +n個實心點,
          故當(dāng)n=5時,
          3n(n-1)
          2
          +n=
          3×5×4
          2
          +5=35個實心點.
          若an=145,即
          3n(n-1)
          2
          +n=145,解得n=10
          故答案為:35,10.
          點評:本題考查了圖形的變化類問題,解題的關(guān)鍵是仔細(xì)觀察每個圖形并從中找到通項公式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)如圖所示的莖葉圖記錄了甲、乙兩個小組(每小組4人)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.已知甲、乙兩個小組的數(shù)學(xué)成績的平均分相同.
          (1)求a的值;
          (2)求乙組四名同學(xué)數(shù)學(xué)成績的方差;
          (3)分別從甲、乙兩組同學(xué)中各隨機選取一名同學(xué),記這兩名同學(xué)數(shù)學(xué)成績之差的絕對值為X,求隨機變量X的分布列和均值(數(shù)學(xué)期望).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
          (1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (2)若對任意a∈[3,4],函數(shù)f(x)在R上都有三個零點,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)設(shè)函數(shù)f(x)=ex(e為自然對數(shù)的底數(shù)),gn(x)=1+x+
          x2
          2!
          +
          x3
          3!
          +…+
          xn
          n!
          (n∈N*).
          (1)證明:f(x)≥g1(x);
          (2)當(dāng)x>0時,比較f(x)與gn(x)的大小,并說明理由;
          (3)證明:1+(
          2
          2
          )1+(
          2
          3
          )2+(
          2
          4
          )3+…+(
          2
          n+1
          )ngn(1)<e
          (n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)已知
          e1
          =(
          3
          ,-1)
          e2
          =(
          1
          2
          ,
          3
          2
          )
          ,若
          a
          =
          e1
          +(t2-3)•
          e2
          b
          =-k•
          e1
          +t•
          e2
          ,若
          a
          b
          ,則實數(shù)k和t滿足的一個關(guān)系式是
          t3-3t-4k=0
          t3-3t-4k=0
          ,
          k+t2
          t
          的最小值為
          -
          7
          4
          -
          7
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)已知平面向量
          a
          =(1,3)
          ,
          b
          =(-3,x)
          ,且
          a
          b
          ,則
          a
          b
          =(  )

          查看答案和解析>>

          同步練習(xí)冊答案