在數(shù)列中,前n項和為
,且
.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),數(shù)列
前n項和為
,求
的取值范圍.
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)已知前項和公式
求
,則
.由此可得數(shù)列
的通項公式.
(Ⅱ)由等差數(shù)列與等比數(shù)列的積或商構(gòu)成的新數(shù)列,求和時用錯位相消法.在本題中用錯位相消法可得.這也是一個數(shù)列,要求數(shù)列的范圍,首先考查數(shù)列的單調(diào)性,而考查數(shù)列的單調(diào)性,一般是考查相鄰兩項的差的符號.作差易得
,所以這是一個遞增數(shù)列,第一項即為最小值.遞增數(shù)列有可能無限增大,趨近于無窮大.本題中由于
,所以
.由此即得
的取值范圍.
試題解析:(Ⅰ)當(dāng)時,
;
當(dāng)時,
,經(jīng)驗證,
滿足上式.
故數(shù)列的通項公式
. 4分
(Ⅱ)可知,
則,
兩式相減,得,
所以. 8分
由于,則
單調(diào)遞增,故
,
又,
故的取值范圍是
12分
考點:1、等差數(shù)列與等比數(shù)列;2、錯位相消法求和;3、數(shù)列的范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在ABC中,三個內(nèi)角A,B,C的對邊分別為
,且A,B,C成等差數(shù)列,
成等比數(shù)列,求證
ABC為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,滿足
,
,
(1)已知,求數(shù)列
所滿足的通項公式;
(2)求數(shù)列 的通項公式;
(3)己知,設(shè)
=
,常數(shù)
,若數(shù)列
是等差數(shù)列,記
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足
(
).
(1)若數(shù)列是等差數(shù)列,求它的首項和公差;
(2)證明:數(shù)列不可能是等比數(shù)列;
(3)若,
(
),試求實數(shù)
和
的值,使得數(shù)列
為等比數(shù)列;并求此時數(shù)列
的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是數(shù)列
的前
項和,對任意
都有
成立, (其中
、
、
是常數(shù)).
(1)當(dāng),
,
時,求
;
(2)當(dāng),
,
時,
①若,
,求數(shù)列
的通項公式;
②設(shè)數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“
數(shù)列”.
如果,試問:是否存在數(shù)列
為“
數(shù)列”,使得對任意
,都有
,且
.若存在,求數(shù)列
的首項
的所
有取值構(gòu)成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項和為
,且
,
.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列前n項和為
,且
,令
.求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,數(shù)列
的前
項和為
,點
在曲線
上
,且
,
.
(1)求數(shù)列的通項公式;
(2)數(shù)列的前
項和為
,且滿足
,
,求數(shù)列
的通項公式;
(3)求證:,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com