日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知點A(0,2)和拋物線y2=x+4上兩點B、C,使得AB⊥BC,求點C的縱坐標的取值范圍.
          精英家教網(wǎng)
          設(shè)B(y12-4,y1)、C(y2-4,y),顯然y12-4≠0,故kAB=
          y1-2
          y12-4
          =
          1
          y1+2

          由于AB⊥BC,∴kBC=-(y1+2),從而
          y-y1=-(y1+2)[x-(y12-4)]
          y2=x+4

          消去x,注意到y(tǒng)≠y1,得(2+y1)(y+y1)+1=0?y12+(2+y)y1+(2y+1)=0,∵
          由△≥0,解得y≤0或y≥4,
          當y=0時,點B的坐標為(-3,-1),當y=4時,點B的坐標為(5,-3),均滿足題意,
          故點C的縱坐標的取值范圍是y≤0或y≥4.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
          (Ⅰ)求動點P的軌跡方程.
          (Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
          k1x1x2
          x1+x2
          =
          k2x3x4
          x3+x4
          ;
          (III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知點A(0,2)和拋物線y2=x+4上兩點B、C,使得AB⊥BC,求點C的縱坐標的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009-2010學年廣東省中山市高三診斷數(shù)學試卷(理科)(解析版) 題型:解答題

          如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
          (Ⅰ)求動點P的軌跡方程.
          (Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:
          (III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009年廣東省佛山市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          如圖,已知點A(0,-3),動點P滿足|PA|=2|PO|,其中O為坐標原點.
          (Ⅰ)求動點P的軌跡方程.
          (Ⅱ)記(Ⅰ)中所得的曲線為C.過原點O作兩條直線l1:y=k1x,l2:y=k2x分別交曲線C于點E(x1,y1)、F(x2,y2)、G(x3,y3)、H(x4,y4)(其中y2>0,y4>0).求證:;
          (III)對于(Ⅱ)中的E、F、G、H,設(shè)EH交x軸于點Q,GF交x軸于點R.求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

          查看答案和解析>>

          同步練習冊答案