日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】

          為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在政府部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目.經(jīng)測算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價值為200元,若該項目不獲利,政府將補貼.

          (I)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;

          (II)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

          【答案】(I需補貼;(II.

          【解析】

          試題分析:I當(dāng)時,獲利是,費用是,兩者差是二次函數(shù),用配方法可知該項目不會獲利;II)平均處理成本即,當(dāng)時,,所以當(dāng)時,取得最小值. 當(dāng)時,,當(dāng)每月處理量為噸時,才能使每噸的平均處理成本最低.

          試題解析:

          I)當(dāng)時,設(shè)該項目獲利為,則

          所以當(dāng)時,,因此,該項目不會獲利,

          當(dāng)時,取得最大值

          所以政府每月至少需要補貼5000元才能使該項目不虧損

          (2)由題意可知,食品殘渣的每噸平均處理成本為:

          ,

          當(dāng)時,,

          所以當(dāng)時,取得最小值240. 9

          當(dāng)時,

          ,

          當(dāng)且僅當(dāng),即時,取得最小值200,因為200<400,所以當(dāng)每月處理量為400噸時,才能使每噸的平均處理成本最低.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩船駛向一個不能同時停泊兩艘船的碼頭,它們在一天二十四小時內(nèi)到達該碼頭的時刻是等可能的.如果甲船停泊時間為1小時,乙船停泊時間為2小時,求它們中的任意一艘都不需要等待碼頭空出的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方體 的棱長為3,M,N分別是棱 、 上的點,且 .
          (1)證明: 四點共面;
          (2)求幾何體 的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三棱錐 ,底面 是以 為直角頂點的等腰直角三角形, , ,二面角 的大小為 .

          (1)求直線 與平面 所成角的大小;
          (2)求二面角 的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點.
          (1)若M是線段EF的中點,證明:平面AMG⊥平面BDF;
          (2)若N為線段EF上任意一點,設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 ,命題 ,命題 .
          (1)若 為真命題,求實數(shù) 的取值范圍;
          (2)若命題 是假命題, 命題 是真命題,求實數(shù) 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在半徑為R的圓內(nèi),作內(nèi)接等腰△ABC,當(dāng)?shù)走吷细遠∈(0,t]時,△ABC的面積取得最大值 ,則t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校從參加高一年級期中考試的學(xué)生中隨機抽出60名學(xué)生,將其物理成績(均為整數(shù))分成六段[40,50),[50,60),,[90,100]后得到如圖所示的頻率分布直方圖觀察圖形的信息,回答下列問題:

          (1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

          (2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表據(jù)此估計本次考試中的平均分.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣1|,a∈R.
          (Ⅰ)若不等式f(x)≥2﹣|x﹣1|恒成立,求實數(shù)a的取值范圍;
          (Ⅱ)當(dāng)a=1時,直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的最大值及此時圍成的三角形的面積.

          查看答案和解析>>

          同步練習(xí)冊答案