日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0,將數(shù)學(xué)公式化為分?jǐn)?shù)指數(shù)冪的形式為________.


          分析:本題是含有多個根號的化簡問題,將根式化為分?jǐn)?shù)指數(shù)冪時,注意由內(nèi)向外逐一脫去根號.
          解答:
          =
          =
          =
          =
          =
          故答案為:
          點評:本題考查根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運算,是基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
          A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
          B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
          (1)求矩陣M的特征值及相應(yīng)的特征向量;
          (2)求逆矩陣M-1以及橢圓
          x2
          4
          +
          y2
          9
          =1
          在M-1的作用下的新曲線的方程.
          C、已知某圓的極坐標(biāo)方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0

          (Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
          (Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中.
          (1)選修4一2:矩陣與變換
          求矩陣A=
          2,1
          3,0
          的特征值及對應(yīng)的特征向量.
          (2)選修4一4:坐標(biāo)系與參數(shù)方程
          已知直線l的參數(shù)方程:
          x=t
          y=1+2t
          (t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
          2
          sin(θ+
          π
          4
          )

          (Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)判斷直線l和圓C的位置關(guān)系.
          (3)選修4一5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廈門模擬)本小題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
          (1)選修4-2:矩陣與變換
          已知e1=
          1
          1
          是矩陣M=
          a
           1
          0
           b
          屬于特征值λ1=2的一個特征向量.
          (I)求矩陣M;
          (Ⅱ)若a=
          2
          1
          ,求M10a.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,A(l,0),B(2,0)是兩個定點,曲線C的參數(shù)方程為
          AB
          為參數(shù)).
          (I)將曲線C的參數(shù)方程化為普通方程;
          (Ⅱ)以A(l,0為極點,|
          AB
          |為長度單位,射線AB為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
          (3)選修4-5:不等式選講
          (I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
          (Ⅱ)若x2+y2=2,且|x|≠|(zhì)y|,求
          1
          (x+y
          )
          2
           
          +
          1
          (x-y
          )
          2
           
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          本題有(1).(2).(3)三個選做題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

          (1)(本小題滿分7分)選修4-2:矩陣與變換選做題

          已知矩陣A=有一個屬于特征值1的特征向量.  

          (Ⅰ) 求矩陣A;

          (Ⅱ) 矩陣B=,點O(0,0),M(2,-1),N(0,2),求在矩陣AB的對應(yīng)變換作用下所得到的的面積. 

          (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程選做題

          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為

          (Ⅰ)將曲線的參數(shù)方程化為普通方程;(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

          (3)(本小題滿分7分)選修4-5:不等式選講選做題

          已知函數(shù),不等式上恒成立.

          (Ⅰ)求的取值范圍;

          (Ⅱ)記的最大值為,若正實數(shù)滿足,求的最大值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年福建省高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

          本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中.
          (1)選修4一2:矩陣與變換
          求矩陣的特征值及對應(yīng)的特征向量.
          (2)選修4一4:坐標(biāo)系與參數(shù)方程
          已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:
          (Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)判斷直線l和圓C的位置關(guān)系.
          (3)選修4一5:不等式選講
          已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

          查看答案和解析>>

          同步練習(xí)冊答案