日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】本小題滿分12己知函數(shù)fx=

          1求曲線y=fx在點(diǎn)0,f0))處的切線方程;

          2求證:當(dāng)x0,1時(shí),fx>2

          3設(shè)實(shí)數(shù)k使得fx>k對(duì)x0,1恒成立,求k的最大值

          【答案】12詳見(jiàn)解析32

          【解析】

          試題分析:1求導(dǎo):,利用導(dǎo)數(shù)幾何意義得切線斜率:,又 ,由點(diǎn)斜式得切線方程:2利用導(dǎo)數(shù)證明不等式,實(shí)質(zhì)利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值:,令 ,只需證3恒成立問(wèn)題,一般利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值,這較繁且難,本題由2時(shí)0,1上恒成立,只需證明當(dāng)時(shí),0,1上不恒成立,這樣就簡(jiǎn)單多了

          試題解析:1

          2,結(jié)論成立

          32時(shí)0,1上恒成立

          當(dāng)時(shí),令

          當(dāng)時(shí), ,即當(dāng)時(shí),0,1上不恒成立

          k的最大值為2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)處的切線與直線垂直.

          (1)求實(shí)數(shù)值;

          (2)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

          (3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)討論函數(shù)的單調(diào)性;

          (Ⅱ)若時(shí),關(guān)于的方程有唯一解,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)及線段,在線段上任取一點(diǎn),線段長(zhǎng)度的最小值稱為“點(diǎn)到線段的距離”,記為.

          (1)設(shè)點(diǎn),線段 ,求;

          (2)設(shè) , ,線段,線段,若點(diǎn)滿足,求關(guān)于的函數(shù)解析式,并寫出該函數(shù)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:yx2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.

          該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.

          組別

          分組

          頻數(shù)

          頻率

          1

          [50,60)

          8

          0.16

          2

          [6070)

          a

          3

          [70,80)

          20

          0.40

          4

          [80,90)

          0.08

          5

          [90,100]

          2

          b

          合計(jì)

          (1)求出ab的值;

          (2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(80)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).

          ①求所抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組的概率;

          ②求所抽取的2名同學(xué)來(lái)自同一組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)

          (1)求橢圓的方程;

          (2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】△ABC的內(nèi)角AB,C的對(duì)邊分別為a,b,c,已知2cosCacosB+bcosA=c

          )求C;()若c=,ABC的面積為,求ABC的周長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)x2b圖象上的點(diǎn)P(2,1)關(guān)于直線yx的對(duì)稱點(diǎn)Q在函數(shù)g(x)lnxa上.

          ()求函數(shù)h(x)g(x)f(x)的最大值;

          ()對(duì)任意x1[1,e],x2,是否存在實(shí)數(shù)k使得不等式成立,若存在,請(qǐng)求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案