日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (14分)已知函數(shù)

          (Ⅰ)若函數(shù)處的切線方程為,求的值;

          (Ⅱ)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

          (Ⅲ)討論方程解的個數(shù),并說明理由.

          解析:(Ⅰ) 

            在直線上,(4分)

          (Ⅱ)

           上是增函數(shù),上恒成立

           所以得          。ǎ阜郑

          (Ⅲ)的定義域是

          ①當(dāng)時,上單增,且無解;

           ②當(dāng)時,上是增函數(shù),且,

          有唯一解;

          ③當(dāng)時,

          那么在單減,在單增,

              時,無解;

               時,有唯一解 ;

               時,

               那么在上,有唯一解

          而在上,設(shè)

            

          即得在上,有唯一解.

          綜合①②③得:時,有唯一解;

                  時,無解;

                 時,有且只有二解.(14分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
          (1)已知函數(shù)f(x)=2sinx(0≤x≤
          n
          2
          ),試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
          n
          2
          ]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
          (2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本大題共14分)已知函數(shù)(為常數(shù)),若函數(shù)的最大值為.(1)求實數(shù)的值;(2)將函數(shù)的圖象向左平移個單位,再向下平移2個單位得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年四川省成都市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

          已知函數(shù)f(x)=loga+bx) (a>0且a≠1),則下列敘述正確的是( )
          A.若a=,b=-1,則函數(shù)f(x)為R上的增函數(shù)
          B.若a=,b=-1,則函數(shù)f(x)為R上的減函數(shù)
          C.若函數(shù)f(x)是定義在R上的偶函數(shù),則b=±1
          D.若函數(shù)f(x)是定義在R上的奇函數(shù),則b=1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(北京卷解析版) 題型:解答題

          已知函數(shù),(),

          (1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

          (2)當(dāng)時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

          【解析】(1), 

          ∵曲線與曲線在它們的交點(1,c)處具有公共切線

          ,

          (2)令,當(dāng)時,

          ,得

          時,的情況如下:

          x

          +

          0

          -

          0

          +

           

           

          所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

          當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

          當(dāng),即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

          當(dāng),即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

          所以在區(qū)間上的最大值為

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浙江省杭州十四中2010屆高三11月月考(理) 題型:解答題

           已知函數(shù)(為常數(shù)),若函數(shù)的最大值為.

          (1)求實數(shù)的值;

          (2)將函數(shù)的圖象向左平移個單位,再向下平移2個單位得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊答案