日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

          (1)求數(shù)列{An}和{Bn}的通項(xiàng);

          (2)當(dāng)n≥7時(shí),比較An與Bn的大小,并證明你的結(jié)論.

          解析:(1)∵1,a1,a2,a3,…,an,2成等比數(shù)列,

          ∴a1an=a2an-1=a3an-2=…=akan-k+1=…=1×2=2.

          ∴An2=(a1an)(a2an-1)(a3an-2)…(an-1a2)(ana1)=(1×2)n=2n.

          ∴An=.∵1,b1,b2,b3,…,bn,2成等差數(shù)列,

          ∴b1+bn=1+2=3.

          ∴Bn=·n=n.

          ∴數(shù)列{An}的通項(xiàng)An=數(shù)列{Bn}的通項(xiàng)Bn=n.

          (2)∵An=,Bn=n,∴An2=2n,Bn2=n2.要比較An與Bn的大小,只需比較An2與Bn2的大小,也即比較當(dāng)n≥7時(shí),2nn2的大小.當(dāng)n=7時(shí),2n=128,n2=×49,得知2nn2.

          經(jīng)驗(yàn)證,n=8,n=9時(shí)均有命題2nn2

          成立.猜想當(dāng)n≥7時(shí),有2nn2,用數(shù)學(xué)歸納法證明.

          ①當(dāng)n=7時(shí),已驗(yàn)證2nn2,命題成立.

          ②假設(shè)n=k(k≥7)時(shí)命題成立,即2kk2,那么2k+1>2×k2.又當(dāng)k≥7時(shí),有k2>2k+1.

          ∴2k+1×(k2+2k+1)=(k+1)2.這就是說,當(dāng)n=k+1時(shí),命題2nn2成立.

          根據(jù)①②,可知命題對(duì)于n≥7都成立.故當(dāng)n≥7時(shí),An>Bn.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn
          (1)求數(shù)列{An}和{Bn}的通項(xiàng);
          (2)當(dāng)n≥7時(shí),比較An和Bn的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在1與2之間插入n個(gè)正數(shù),使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù),使這n+2個(gè)數(shù)成等差數(shù)列。記,

          。w.w.w.k.s.5.u.c.o.m    

          (1)       求數(shù)列的通項(xiàng);(2)當(dāng)的大小關(guān)系(不需證明)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在1與2之間插入n個(gè)正數(shù)A1,A2,A3,…,An,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)B1,B2,B3,…,Bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=A1A2A3An,Bn=B1+B2+…+

          Bn.

          (1)求數(shù)列{An} 和{Bn}的通項(xiàng);

          (2)當(dāng)n≥7時(shí),比較AnBn的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在1與2之間插入n個(gè)正數(shù)a1,a2,a3,…,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,…,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

          (1)求數(shù)列{An} 和{Bn}的通項(xiàng);

          (2)當(dāng)n≥7時(shí),比較An與Bn的大小,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案