【題目】已知拋物線上一點(diǎn)
到其焦點(diǎn)
的距離為2.
(1)求拋物線的方程;
(2)若直線與圓
切于點(diǎn)
,與拋物線
切于點(diǎn)
,求
的面積.
【答案】(1) (2)
【解析】試題分析:(1)在拋物線
上,∴
,由拋物線焦半徑公式可得
,解得
,所以拋物線
的方程為
;(2)設(shè)直線
方程為:
,根據(jù)
與圓
相切,直線
與拋物線
相切,列方程組可求得解得
或
,根據(jù)勾股定理求出弦長(zhǎng),利用點(diǎn)到直線距離公式求出三角形的高,從而可得
的面積.
試題解析:(1)∵在拋物線
上,∴
,
由題意可知, ,解得
,
所以拋物線的方程為
;
(2)設(shè)直線方程為:
,∵
與圓
相切,
∴,整理得
,①
依題意直線與拋物線
相切,
由得
(*)
②
由①②解得或
,
此時(shí)方程(*)化為,解得
,∴點(diǎn)
,
∴,
直線為:
或
,
到
的距離為
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的上下兩個(gè)焦點(diǎn)分別為
,
,過(guò)點(diǎn)
與
軸垂直的直線交橢圓
于
、
兩點(diǎn),
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線
:
與
軸交于點(diǎn)
,與橢圓
交于
,
兩個(gè)不同的點(diǎn),若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知所在的平面,
是
的直徑,
是
上一點(diǎn),且
是
中點(diǎn),
為
中點(diǎn).
(1)求證: 面
;
(2)求證: 面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是
,過(guò)點(diǎn)
的動(dòng)直線
與橢圓相交于
兩點(diǎn),當(dāng)直線
與
軸平行時(shí),直線
被橢圓
截得的線段長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得直線
變化時(shí),總有
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且
在
和
處取得極值.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),是否存在實(shí)數(shù)
,使得曲線
與
軸有兩個(gè)交點(diǎn),若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)的圖象如圖所示,則不等式f′(x)f(x)<0的解集為( )
A.(1,2)∪( ,3)∪(﹣∞,﹣1)
B.(﹣∞,﹣1)∪( ,3)
C.(﹣∞,﹣1)∪(3,+∞)
D.(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓(
)的離心率是
,點(diǎn)
在短軸
上,且
。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)
的動(dòng)直線與橢圓交于
兩點(diǎn)。是否存在常數(shù)
,使得
為定值?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2ax2+bx+1(e為自然對(duì)數(shù)的底數(shù)).
(1)若 ,求函數(shù)F(x)=f(x)ex的單調(diào)區(qū)間;
(2)若b=e﹣1﹣2a,方程f(x)=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com