日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)討論函數(shù)y=f(x)在∈(m,+∞)上的單調(diào)性;

          (2),則當(dāng)x∈[m,m+1]時(shí),函數(shù)y= f(x)的圖象是否總在函數(shù)圖象上方?請(qǐng)寫出判斷過程.

          【答案】(1) (m,m+1)上單調(diào)遞減,在(m+1,+∞)上單調(diào)遞增; (2)見解析.

          【解析】

          (1)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)(1)上單調(diào)遞減,所以其最小值為.因?yàn)?/span>上的最大值為.所以只需判斷的大小,其中.

          (1) ,

          當(dāng)x∈(m,m+1)時(shí),,當(dāng)x∈(m+1,+∞)時(shí),,

          所以f(x)(m,m+1)上單調(diào)遞減,在(m+1,+∞)上單調(diào)遞增.

          (2)(1)f(x)[m,m+1]上單調(diào)遞減,

          所以其最小值為.

          因?yàn)?/span>上的最大值為.

          所以下面判斷f(m+1)的大小,即判斷(1+x)x的大小,其中.

          ,則,

          ,則

          因?yàn)?/span>,所以,單調(diào)遞增,

          所以,

          故存在,使得.

          所以k(x)上單調(diào)遞減,在上單調(diào)遞增.

          所以.

          所以當(dāng)時(shí),

          ,也即

          所以函數(shù)y=f(x)的圖象總在函數(shù)圖象上方.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,AB=1,PA=2,E為PB的中點(diǎn),點(diǎn)F在棱PC上,且PF=λPC.

          (1)求直線CE與直線PD所成角的余弦值;
          (2)當(dāng)直線BF與平面CDE所成的角最大時(shí),求此時(shí)λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時(shí)間在晚上的男嬰為24人,女嬰為8人;出生時(shí)間在白天的男嬰為31人,女嬰為26人.

          (1)將2×2列聯(lián)表補(bǔ)充完整.

          性別

          出生時(shí)間

          總計(jì)

          晚上

          白天

          男嬰

          女嬰

          總計(jì)

          (2)能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知球O是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)A﹣BCD的外接球,BC=3,AB=2 ,點(diǎn)E在線段BD上,且BD=3BE,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸長(zhǎng)為6,且橢圓C與圓M:(x﹣2)2+y2= 的公共弦長(zhǎng)為
          (1)求橢圓C的方程,
          (2)過點(diǎn)P(0,2)作斜率為k(k≠0)的直線l與橢圓C交于兩點(diǎn)A,B,試判斷在x軸上是否存在點(diǎn)D,使得△ADB為以AB為底邊的等腰三角形,若存在,求出點(diǎn)D的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校期中考試后,按照學(xué)生的數(shù)學(xué)考試成績(jī)優(yōu)秀和不優(yōu)秀進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

          優(yōu)秀

          不優(yōu)秀

          總計(jì)

          文科

          60

          140

          200

          理科

          265

          335

          600

          總計(jì)

          325

          475

          800

          (1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷數(shù)學(xué)成績(jī)與文理分科是否有關(guān);

          (2)利用獨(dú)立性檢驗(yàn),分析文理分科對(duì)學(xué)生的數(shù)學(xué)成績(jī)是否有影響.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2016年備受矚目的二十國(guó)集團(tuán)領(lǐng)導(dǎo)人第十一次峰會(huì)于9月4~5日在杭州舉辦,杭州G20籌委會(huì)已經(jīng)招募培訓(xùn)翻譯聯(lián)絡(luò)員1000人、駕駛員2000人,為測(cè)試培訓(xùn)效果,采取分層抽樣的方法從翻譯聯(lián)絡(luò)員、駕駛員中共隨機(jī)抽取60人,對(duì)其做G20峰會(huì)主題及相關(guān)服務(wù)職責(zé)進(jìn)行測(cè)試,將其所得分?jǐn)?shù)(分?jǐn)?shù)都在60~100之間)制成頻率分布直方圖如下圖所示,若得分在90分及其以上(含90分)者,則稱其為“G20通”.
          (Ⅰ)能否有90%的把握認(rèn)為“G20通”與所從事工作(翻譯聯(lián)絡(luò)員或駕駛員)有關(guān)?
          (Ⅱ)從參加測(cè)試的成績(jī)?cè)?0分以上(含80分)的駕駛員中隨機(jī)抽取4人,4人中“G20通”的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

          P(K2≥k0

          0.10

          0.05

          0.010

          0.001

          k0

          2.706

          3.841

          6.635

          10.828

          附參考公式與數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2﹣a2

          (2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值.請(qǐng)寫出這個(gè)定值(不要求給出解題過程).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某個(gè)體服裝店經(jīng)營(yíng)某種服裝,該服裝店每天所獲利潤(rùn)y(元)與每天售出這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:

          x

          3

          4

          5

          6

          7

          8

          9

          y

          66

          69

          74

          81

          89

          90

          91

          (1)求利潤(rùn)y與每天售出件數(shù)x之間的回歸方程 (回歸直線的斜率用分?jǐn)?shù)表示).

          (2)若該服裝店某天銷售服裝13件,估計(jì)可獲利潤(rùn)多少元?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案