日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          OP
          =(x,y)
          ,當實數(shù)x,y滿足約束條件:
          y≤0
          y≥x
          2x+y+k≥0
          (k為常數(shù))時,能使|
          OP
          |
          max
          =5的k值為
          10
          10
          分析:作出題中不等式組表示的平面區(qū)域,得到如圖所示的△OAB及其內部,根據(jù)向量模的公式算出
          |OA|
          =|
          k
          2
          |,
          |OB|
          =
          2
          3
          |k|,可得
          |OA|
          |OB|
          .運動區(qū)域內的點P,當P與點A重合時|
          OP
          |
           
          達到最大值,由此建立關于k的等式,解之即可得到滿足條件的k值.
          解答:解:根據(jù)題意,作出不等式組
          y≤0
          y≥x
          2x+y+k≥0
          所表示的平面區(qū)域,
          得到如圖所示的△OAB及其內部,其中A(-
          k
          2
          ,0),B(-
          k
          3
          ,-
          k
          3

          |OA|
          =
          (-
          k
          2
          )2+02
          =|
          k
          2
          |,
          |OB|
          =
          (-
          k
          3
          )
          2
          +(-
          k
          3
          )
          2
          =
          2
          3
          |k|,(k≠0)
          |OA|
          |OB|
          ,點P(x,y)為區(qū)域內部一個動點,運動點P可得當P與點A重合時,|
          OP
          |
           
          達到最大值,
          因此,若|
          OP
          |
          max
          =5,則|
          OP
          |
           
          =
          |OA|
          =|
          k
          2
          |=5,解之得k=±10.
          ∵△OAB在第三象限,可得k>0,∴k=10
          故答案為:10
          點評:本題給出二元一次不等式組,求滿足條件“|
          OP
          |
          max
          =5”的k值.著重考查了向量模的公式、二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知向量
          OP
          =(2,1),
          OA
          =(1,7),
          OB
          =(5,1),設X是直線OP上的一點(O為坐標原點),那么
          XA
          XB
          的最小值是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知向量
          OP
          =(2sinx,-1),
          OQ
          =(cosx,cos2x)
          ,定義函數(shù)f(x)=
          OP
          OQ

          (Ⅰ)求函數(shù)f(x)的表達式,并指出其最大最小值;
          (Ⅱ)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•寶雞模擬)已知向量
          OP
          =(x,y),
          OQ
          =(y,2)
          ,曲線C上的點滿足:
          OP
          OQ
          =2x
          .點M(xk,xk+1)在曲線C上,且xk≠0,x1=1,數(shù)列{an}滿足:ak=
          1
          xk
          ,(k,n∈N+)

          (1)求數(shù)列{an}通項公式;
          (2)若數(shù)列{bn}滿足bn=7-2an,求數(shù)列{|bn|}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源:寶雞模擬 題型:解答題

          已知向量
          OP
          =(x,y),
          OQ
          =(y,2)
          ,曲線C上的點滿足:
          OP
          OQ
          =2x
          .點M(xk,xk+1)在曲線C上,且xk≠0,x1=1,數(shù)列{an}滿足:ak=
          1
          xk
          ,(k,n∈N+)

          (1)求數(shù)列{an}通項公式;
          (2)若數(shù)列{bn}滿足bn=7-2an,求數(shù)列{|bn|}的前n項和Tn

          查看答案和解析>>

          同步練習冊答案